Stimuli-responsive polymers have attracted academic interest over the last 60 years due to their potential use in developing systems with a range of functionalities that can be activated by external artificial triggers. The diversity of responses and stimuli, which can be achieved through careful polymer selection and processing, opens up applications in nearly every sector. In particular, the use of responsive polymers for the controlled delivery of drugs and bioactive compounds has been heavily researched. This review provides an overview of the recent advancements in electrospinning of temperature- and pH-responsive polymers to create networks of nanofibres with controlled drug delivery profiles for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.28043 | DOI Listing |
Molecules
January 2025
Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Department of Biomedical Laboratory Science, Daegu Health College, Chang-ui Building, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea.
Point-of-care (POC) use is one of the essential goals of biosensing platforms. Because the increasing demand for testing cannot be met by a centralized laboratory-based strategy, rapid and frequent testing at the right time and place will be key to increasing health and safety. To date, however, there are still difficulties in developing a simple and affordable, as well as sensitive and effective, platform that enables POC use.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France.
Bone is a natural mineral-organic nanocomposite protecting internal organs and allowing mobility. Through the ages, numerous strategies have been developed for repairing bone defects and fixing fractures. Several generations of bone repair biomaterials have been proposed, either based on metals, ceramics, glasses, or polymers, depending on the clinical need, the maturity of technologies, and knowledge of the natural constitution of the bone tissue to be repaired.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
Hyperbranched polymers (HBPs) have drawn great interest in the biomedical field on account of their special morphology, low viscosity, self-regulation, and facile preparation methods. Moreover, their large intramolecular cavities, high biocompatibility, biodegradability, and targeting properties render them very suitable for anti-tumor drug delivery. Recently, exploiting the specific characteristics of the tumor microenvironment, a range of multifunctional HBPs responsive to the tumor microenvironment have emerged.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India.
Objective: It has been reported that cancer cells get protected by a complex and rich multicellular environment i.e. the tumor microenvironment (TME) consisting of varying immune cells, endothelial cells, dendritic cells, fibroblasts, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!