Mitochondria are highly dynamic organelles that undergo fission and fusion to adapt to the metabolic needs of the cell. Mitofusins are dynamin-like GTPases that play a key role in the regulation of mitochondrial fusion and metabolism. In Saccharomyces cerevisiae, mitofusin Fzo1 levels are controlled by post-translational ubiquitination and degradation. However, it is not clear whether the levels of the Schizosaccharomyces pombe mitofusin Fzo1 are similarly regulated. In this study, we examined the expression S. pombe Fzo1 during normal growth. We showed that Fzo1 protein levels but not mRNA expression levels were reduced during the stationary phase. The protein was stabilized by the proteasome inhibitor bortezomib. Disruption of ubc8 encoding a ubiquitin-conjugating enzyme and rsv2 encoding an S. pombe homolog of S. cerevisiae RPN4 known for activating the expression of genes required for proteasomal biogenesis suppresses the proteasomal degradation of Fzo1 during the stationary phase. Overexpression of fzo1 prevents its degradation. Our results suggest that like S. pombe Fzo1 expression is not regulated by transcription but rather by proteolytic degradation during the stationary phase. Our findings also suggest that although S. cerevisiae and S. pombe Fzo1 proteins are regulated by ubiquitin-proteasomal degradation, different ubiquitin-conjugating enzymes (E2) and ubiquitin ligases (E3) are involved in their degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10123-022-00231-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!