Using traditional statistical methods, we previously analyzed the risk factors and treatment outcomes of veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) after allogeneic hematopoietic cell transplantation. Within the same cohort, we applied machine learning to create prediction and recommendation models. We analyzed 2572 transplants using eXtreme Gradient Boosting (XGBoost) to predict post-transplant VOD/SOS and early death. Using the XGBoost and SHapley Additive exPlanations (SHAP), we found influential factors and devised recommendation models, which were internally verified by repetitive ten-fold cross-validation. SHAP values suggested that gender, busulfan dosage, age, forced expiratory volume, and Disease Risk Index were significant factors for VOD/SOS. The areas under the receiver operating characteristic curves and the areas under the precision-recall curve of the models were 0.740, 0.144 for all VOD/SOS, 0.793, 0.793 for severe to very severe VOD/SOS, and 0.746, 0.304 for early death. According to our single feature recommendation, following the busulfan dosage was the most effective for preventing VOD/SOS. The recommendation method for six adjustable feature sets was also validated, and a subgroup corresponding to five to six features showed significant preventive power for VOD/SOS and early death. Our personalized treatment set recommendation showed reproducibility in repetitive internal validation, but large external cohorts should prospectively validate our model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41409-022-01583-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!