Sensors based on Bragg gratings inscribed in conventional single mode fibers are expensive due to the need of a sophisticated, but low-speed, interrogation system. As an alternative to overcome this issue, in this work, it is proposed and demonstrated the use of coupled-core optical fiber Bragg gratings. It was found that the relative reflectivity from such gratings changed when the coupled-core fiber was subjected to point or periodic bending. This feature makes the interrogation of such gratings simple, fast, and cost-effective. The reflectivity changes of the gratings are attributed to the properties of the supermodes supported by the coupled-core fiber. As potential applications of the referred gratings, intensity-modulated vector bending and vibration sensing are demonstrated. We believe that the results reported here can pave the way to the development of many inexpensive sensors. Besides, coupled-core fiber Bragg gratings may expand the use of grating technology in other areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786905 | PMC |
http://dx.doi.org/10.1038/s41598-022-05313-9 | DOI Listing |
Commonly used linear equalizers in optical transmissions may induce in-band noise enhancement in the high-frequency region, degrading signaling performance. In this Letter, we propose for the first, to our knowledge, time, to mitigate the multi-input-multi-output (MIMO) equalizer-enhanced noise (EEN) in coupled-core multicore fiber (CC-MCF) systems by utilizing the spectral shaping (SS) filter and maximum likelihood sequence detection (MLSD), which have shown effective EEN mitigation in SMF systems. However, CC-MCF systems feature multiple spatial channels, each requiring separate coefficient optimization for SS filters corresponding to each output of MIMO.
View Article and Find Full Text PDFDuring recent years, the optical-fiber-based simultaneous sensing of strain and temperature has attracted increased interest for different applications, e.g., in medicine, architecture, and aerospace.
View Article and Find Full Text PDFSpace-division multiplexing (SDM) has been expected to support the continuous growth of transmission capacity. However, it suffers from high computation complexity that limits its physical implementations. In this paper, we propose and experimentally demonstrate a low-complexity MIMO equalization method to leverage the sparsity of weights and reduce the complexity by L1&L2-regularization in long-haul space-division multiplexing (SDM) systems.
View Article and Find Full Text PDFFemtosecond inscription of fiber Bragg gratings (FBGs) in each core of a cladding-pumped seven-core Yb-doped fiber enables efficient (≈70%) 1064-nm lasing in a robust all-fiber scheme with ≈33 W power, nearly the same for uncoupled and coupled cores. However, the output spectrum is quite different: without coupling, seven individual lines corresponding to the in-core FBG reflection spectra sum up into a broad (0.22 nm) total spectrum, whereas the multiline spectrum collapses into a single narrow line at strong coupling.
View Article and Find Full Text PDFParametric amplifiers relying on the nonlinear four-wave mixing process are known for their signature symmetric gain spectrum, where signal and idler sidebands are generated on both sides of a powerful pump wave frequency. In this article we show analytically and numerically that parametric amplification in two identically coupled nonlinear waveguides can be designed in such a way that signals and idlers are naturally separated into two different supermodes, hence providing idler-free amplification for the supermode carrying signals. This phenomenon is based on the coupled-core fibers analogue of intermodal four wave-mixing occurring in a multimode fiber.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!