Under the irradiation of an ultrafast intense laser, solid materials can be driven into nonequilibrium states undergoing an ultrafast solid-liquid phase transition. Understanding such nonequilibrium states is essential for scientific research and industrial applications because they exist in various processes including laser fusion and laser machining yet challenging in the sense that high resolution and single-shot capability are required for the measurements. Herein, an ultrafast diffraction technique with megaelectron-volt (MeV) electrons is used to resolve the atomic pathway over the entire laser-induced ultrafast melting process, from the initial loss of long-range order and the formation of high-density liquid to the progressive evolution of short-range order and relaxation into the metastable low-density liquid state. High-resolution measurements using electron pulse compression and a time-stamping technique reveal a coherent breathing motion of polyhedral clusters in transient liquid aluminum during the ultrafast melting process, as indicated by the oscillation of the interatomic distance between the center atom and atoms in the nearest-neighbor shell. Furthermore, contraction of interatomic distance was observed in a superheated liquid state with temperatures up to 6,000 K. The results provide an atomic view of melting accompanied with internal pressure relaxation and are critical for understanding the structures and properties of matter under extreme conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795546 | PMC |
http://dx.doi.org/10.1073/pnas.2111949119 | DOI Listing |
ACS Earth Space Chem
December 2024
Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California 94035, United States.
Molecular dynamics simulations were performed to characterize reaction products, resulting from solar wind irradiation, namely, H, of methane and methane-water ices. In our approach, we used seven 0.829 keV H (total energy of 5.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Rigaku Americas Corporation, The Woodlands Texas 77381 USA.
The crystal structure of the title compound, [Ni(CHN)(NO)]NO, at room temperature, has monoclinic (2/) symmetry. The structure displays inter-molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site.
View Article and Find Full Text PDFDalton Trans
December 2024
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
In recent years, hydroxyborates with excellent properties have attracted much attention. Through dedicated efforts, three new hydroxyborates-KBO(OH), CsBO(OH), and CsBO(OH)-have been successfully synthesized in a closed system. The ultraviolet (UV) cut-off edges of both KBO(OH) and CsBO(OH) are below 200 nm, indicating their potential as candidates for deep-ultraviolet (DUV) materials.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China; Academy of Advanced Interdisciplinary Studies, Wuhan University, Wuhan 430072, China. Electronic address:
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro 22451-900, RJ, Brazil.
The effects of cosmic-ray bombardment of chiral molecules in the interstellar medium are simulated in the laboratory by performing radiolysis experiments of pure α-pinene ices at four different temperatures. The identification and significance of α-pinene have not been fully understood because of the insufficient amount of spectral information of these compounds at low temperatures. A comparison of the temperature dependence of the mid-infrared spectra of pure α-pinene ices before and after irradiation its irradiation by 61.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!