Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2022.103275 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Program in Genetics, Molecular, and Cellular Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111.
CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
Background: Chromosomal instability (CIN), a hallmark of cancer, is commonly linked to poor prognosis in high-grade prostate cancer (PCa). Paradoxically, excessively high levels of CIN may impair cancer cell viability. Consequently, understanding how tumours adapt to CIN is critical for identifying novel therapeutic targets.
View Article and Find Full Text PDFProtein Pept Lett
December 2024
Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sec 62, Noida, 201309, India.
Endogenous or exogenous DNA damage needs to be repaired, therefore, cells in all the three domains have repair pathways to maintain the integrity of their genetic material. Uracil DNA glycosylases (UDGs), also known as UNGs (uracil-DNA N-glycosylases), are part of the base-excision repair (BER) pathway. These enzymes specifically remove uracil from DNA molecules by cleaving the glycosidic bond between the uracil base and the deoxyribose sugar.
View Article and Find Full Text PDFBMB Rep
December 2024
Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul (02792), South Korea; Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul (02792), South Korea.
CRISPR/Cas systems have emerged as powerful tools for gene editing, nucleic acid detection, and therapeutic applications. Recent advances in single-molecule techniques have provided new insights into the DNA-targeting mechanisms of CRISPR/Cas systems, in particular, Types I, II, and V. Here, we review how single-molecule approaches have expanded our understanding of key processes, namely target search, recognition, and cleavage.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
Background: The study of newly formed centromere with stable transmission ability can provide theoretical guidance for the construction of artificial chromosomes. More neocentromeres are needed to study the mechanisms of their formation.
Results: In this study, a minichromosome 7RLmini was derived from the progeny of wheat-rye 7R monosomic addition line.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!