A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discovery of small molecules interacting at lactate dehydrogenases tetrameric interface using a biophysical screening cascade. | LitMetric

Discovery of small molecules interacting at lactate dehydrogenases tetrameric interface using a biophysical screening cascade.

Eur J Med Chem

Medicinal Chemistry Research Lab (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200, Brussels, Belgium; Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), B-1200, Brussels, Belgium.

Published: February 2022

Lactate dehydrogenases (LDHs) are tetrameric enzymes of therapeutic relevance for cancer therapy due to their important implications in cancer cell metabolism. LDH active site inhibition suffers from different drawbacks due to several features such as high cellular concentration and a shared active site among the dehydrogenase family. Conversely, targeting the LDH oligomeric state is an exciting strategy that could provide a suitable alternative to active-site inhibition. In the present study, we developed a biophysical screening cascade to probe the LDHs tetrameric interface. Using nanoscale differential fluorimetry (nanoDSF) as a primary screening method, we identified a series of hits that destabilize the tetrameric protein. From this primary screening, we validated selected hits using saturation transfer difference nuclear magnetic resonance (STD NMR) and microscale thermophoresis (MST) as a combination of orthogonal biophysical techniques. Finally, we characterized the validated hits and demonstrated that they specifically interact at the tetrameric interface of LDH-1 and LDH-5 and can inhibit the LDH tetramerization process. Overall, this work provides a convenient method for screening ligands at the LDH tetrameric interface and has identified promising hits suitable for further optimization. We believe that this biophysical screening cascade, especially the use of (nano)DSF, could be extended to other homomeric proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114102DOI Listing

Publication Analysis

Top Keywords

tetrameric interface
16
biophysical screening
12
screening cascade
12
lactate dehydrogenases
8
ldhs tetrameric
8
active site
8
primary screening
8
tetrameric
6
screening
6
discovery small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!