Photosynthetic bacteria with iron oxide nanoparticles as catalyst for cooking oil removal and valuable products recovery with heavy metal co-contamination.

Waste Manag

Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:

Published: March 2022

AI Article Synopsis

Article Abstract

Waste cooking oil discharge causes environmental pollution in receiving waters, particularly when associated with heavy metals that can lead to formation of hazardous organometallic compounds. This study combined iron oxide nanomaterial and the anoxygenic photosynthetic bacterium Rhodopseudomonas faecalis PA2 for removal of cooking oil in the presence of heavy metals. R. faecalis PA2, with known capability to generate beneficial substances from several wastes, was capable of cooking oil removal with production of valuable products. Oil removal, biomass, protein, and carotenoid production were 82.38%, 1.48 g/L, 1,600.19 mg/L, and 1,046.33 mg/L, respectively, under optimal conditions (cooking oil as carbon source and 30% inoculum density). Iron (Fe) stimulates growth of R. faecalis; in this study, FeO nanoparticles were synthesized and used as a catalyst to facilitate interaction and high reactivity between Fe and R. faecalis PA2. Size measurement by transmission electron microscopy (17.44 nm), X-ray diffraction peaks, and magnetic susceptibility confirmed that the synthesized nanoparticles were magnetite FeO. Biomass, protein, and carotenoid production of the FeO supplemented experiment increased by 61.56%, 70.78%, and 57.2%, respectively, when compared with the control. When different concentrations of heavy metals (Pb, Ni, Co, and Zn) were supplemented in the media containing cooking oil, FeO addition increased heavy metal tolerance, improved bacterial growth, and enhanced valuable products when compared with the non-supplemented group. This study reports the positive impact of nanoparticle application as a catalyst for valorization of cooking oil waste with heavy metal co-contamination by the photosynthetic bacterium R. faecalis PA2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2022.01.005DOI Listing

Publication Analysis

Top Keywords

cooking oil
28
faecalis pa2
16
oil removal
12
valuable products
12
heavy metal
12
heavy metals
12
iron oxide
8
oil
8
metal co-contamination
8
photosynthetic bacterium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!