A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Arsenite phytotoxicity and metabolite redistribution in lettuce (Lactuca sativa L.). | LitMetric

Arsenite phytotoxicity and metabolite redistribution in lettuce (Lactuca sativa L.).

Sci Total Environ

Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Tianjin Key Laboratory of Agro-environment and Safe-product, Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China. Electronic address:

Published: May 2022

Arsenic (As) contamination has become a global problem, especially in developing countries, where a significant percentage of the population depends on groundwater for drinking. Arsenic toxicity depends on its chemical form. Herein, we evaluated the phytotoxicity of arsenite [As(III)], including As accumulation and adverse physiological responses (e.g., growth inhibition, oxidative stress, and metabolic disturbances). Furthermore, this result was compared with the mechanism of the phytotoxicity of arsenate [As(V)] that we previously explored. As accumulated mainly in the roots (29.33-88.73 mg/kg) of lettuce, only a small amount was transferred to the leaves (0.08-0.22 mg/kg); arsenic mainly existed in the form of As(III) in plants. As(III) was positively correlated with Mn in the leaves and roots and negatively correlated with Ca in roots and Mg in leaves, consistent with the increase in SOD activity and the destruction of the chloroplast membrane. Plants responded differently to As(III) and As(V) in terms of the antioxidant response and metabolic response. CAT activity in leaves was reduced following As(III) exposure and increased upon As(V) exposure. Furthermore, As(III) decreased the levels of some products of the tricarboxylic acid cycle and induced abnormal metabolism of secondary metabolites, such as phenol and niacin. The present study explored arsenic accumulation induced by As(III), the related physiological and biochemical responses and subsequent metabolite redistribution, and provided insights into the effects of different As species on plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153271DOI Listing

Publication Analysis

Top Keywords

metabolite redistribution
8
asiii
6
arsenite phytotoxicity
4
phytotoxicity metabolite
4
redistribution lettuce
4
lettuce lactuca
4
lactuca sativa
4
arsenic
4
sativa arsenic
4
arsenic contamination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!