A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aberration Correction to Optimize the Performance of Two-Photon Fluorescence Microscopy Using the Genetic Algorithm. | LitMetric

Aberration Correction to Optimize the Performance of Two-Photon Fluorescence Microscopy Using the Genetic Algorithm.

Microsc Microanal

Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen518060, China.

Published: January 2022

Due to less light scattering and a better signal-to-noise ratio in deep imaging, two-photon fluorescence microscopy (TPFM) has been widely used in biomedical photonics since its advent. However, optical aberrations degrade the performance of TPFM in terms of the signal intensity and the imaging depth and therefore restrict its application. Here, we introduce adaptive optics based on the genetic algorithm to detect the distorted wavefront of the excitation laser beam and then perform aberration correction to optimize the performance of TPFM. By using a spatial light modulator as the wavefront controller, the correction phase is obtained through a signal feedback loop and a process of natural selection. The experimental results show that the signal intensity and imaging depth of TPFM are improved after aberration correction. Finally, the method was applied to two-photon fluorescence lifetime imaging, which helps to improve the signal-to-noise ratio and the accuracy of lifetime analysis. Furthermore, the method can also be implemented in other experiments, such as three-photon microscopy, light-sheet microscopy, and super-resolution microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927622000034DOI Listing

Publication Analysis

Top Keywords

aberration correction
12
two-photon fluorescence
12
correction optimize
8
optimize performance
8
fluorescence microscopy
8
genetic algorithm
8
signal-to-noise ratio
8
performance tpfm
8
signal intensity
8
intensity imaging
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!