Background: The distribution of parasite load across hosts may modify the transmission dynamics of infectious diseases. Chagas disease is caused by a multi-host protozoan, Trypanosoma cruzi, but the association between host parasitemia and infectiousness to the vector has not been studied in sylvatic mammalian hosts. We quantified T. cruzi parasite load in sylvatic mammals, modeled the association of the parasite load with infectiousness to the vector and compared these results with previous ones for local domestic hosts.
Methods: The bloodstream parasite load in each of 28 naturally infected sylvatic mammals from six species captured in northern Argentina was assessed by quantitative PCR, and its association with infectiousness to the triatomine Triatoma infestans was evaluated, as determined by natural or artificial xenodiagnosis. These results were compared with our previous results for 88 humans, 70 dogs and 13 cats, and the degree of parasite over-dispersion was quantified and non-linear models fitted to data on host infectiousness and bloodstream parasite load.
Results: The parasite loads of Didelphis albiventris (white-eared opossum) and Dasypus novemcinctus (nine-banded armadillo) were directly and significantly associated with infectiousness of the host and were up to 190-fold higher than those in domestic hosts. Parasite load was aggregated across host species, as measured by the negative binomial parameter, k, and found to be substantially higher in white-eared opossums, cats, dogs and nine-banded armadillos (range: k = 0.3-0.5) than in humans (k = 5.1). The distribution of bloodstream parasite load closely followed the "80-20 rule" in every host species examined. However, the 20% of human hosts, domestic mammals or sylvatic mammals exhibiting the highest parasite load accounted for 49, 25 and 33% of the infected triatomines, respectively.
Conclusions: Our results support the use of bloodstream parasite load as a proxy of reservoir host competence and individual transmissibility. The over-dispersed distribution of T. cruzi bloodstream load implies the existence of a fraction of highly infectious hosts that could be targeted to improve vector-borne transmission control efforts toward interruption transmission. Combined strategies that decrease the parasitemia and/or host-vector contact with these hosts would disproportionally contribute to T. cruzi transmission control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785451 | PMC |
http://dx.doi.org/10.1186/s13071-022-05152-7 | DOI Listing |
PLoS One
January 2025
Department of Microbiology, Immunology and Parasitology, Laboratory of Protozoology, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
In Brazil, Visceral Leishmaniases is caused by Leishmania infantum, and domestic dogs are the main reservoirs in its urban transmission cycle. As an alternative to euthanizing dogs, miltefosine has been used to treat canine visceral leishmaniasis since 2016. In this study, we have assessed the efficacy of miltefosine for treating canine visceral leishmaniasis in a new endemic area through follow-up of naturally infected dogs was evaluated.
View Article and Find Full Text PDFInfect Dis Poverty
January 2025
Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
Background: Clonorchiasis is an important foodborne parasitic disease in China caused by Clonorchis sinensis. Accurate and rapid diagnosis of this disease is vital for treatment and control. Traditional fecal examination methods, such as the Kato-Katz (KK) method, are labor-intensive, time-consuming, and have limited acceptance.
View Article and Find Full Text PDFActa Trop
January 2025
Schistosomiasis Reference Laboratory, Parasitology Department, Aggeu Magalhães Institute/FIOCRUZ-PE, Recife, Pernambuco, Brazil. Electronic address:
Schistosomiasis presents a significant public health challenge, especially in regions with inadequate sanitation. Current diagnostic methods, including the Kato-Katz technique, often lack sensitivity in detecting low parasite loads, prompting the search for more precise alternatives. This study introduces the Sm1-7-qPCR system as a highly sensitive and specific diagnostic tool for identifying S.
View Article and Find Full Text PDFExp Parasitol
December 2024
Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brazil. Electronic address:
PLoS Negl Trop Dis
December 2024
Genômica Funcional de Parasitos, Instituto René Rachou-Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil.
Background: Visceral leishmaniasis (VL) is an infectious parasitic disease caused by the species Leishmania (Leishmania) infantum in the Mediterranean Basin, the Middle East, Central Asia, South America, and Central America, and Leishmania (Leishmania) donovani in Asia and Africa. VL represents the most severe and systemic form of the disease and is fatal if left untreated. Vaccines based on chimeric or multiepitope antigens hold significant potential to induce a highly effective and long-lasting immune response against infections by these parasites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!