Ceragenins are a family of synthetic amphipathic molecules designed to mimic the properties of naturally occurring cationic antimicrobial peptides (CAMPs). Although ceragenins have potent antimicrobial activity, whether their mode of action is similar to that of CAMPs has remained elusive. Here, we reported the results of a comparative study of the bacterial responses to two well-studied CAMPs, LL37 and colistin, and two ceragenins with related structures, CSA13 and CSA131. Using transcriptomic and proteomic analyses, we found that Escherichia coli responded similarly to both CAMPs and ceragenins by inducing a Cpx envelope stress response. However, whereas E. coli exposed to CAMPs increased expression of genes involved in colanic acid biosynthesis, bacteria exposed to ceragenins specifically modulated functions related to phosphate transport, indicating distinct mechanisms of action between these two classes of molecules. Although traditional genetic approaches failed to identify genes that confer high-level resistance to ceragenins, using a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) approach we identified E. coli essential genes that when knocked down modify sensitivity to these molecules. Comparison of the essential gene-antibiotic interactions for each of the CAMPs and ceragenins identified both overlapping and distinct dependencies for their antimicrobial activities. Overall, this study indicated that, while some bacterial responses to ceragenins overlap those induced by naturally occurring CAMPs, these synthetic molecules target the bacterial envelope using a distinctive mode of action. The development of novel antibiotics is essential because the current arsenal of antimicrobials will soon be ineffective due to the widespread occurrence of antibiotic resistance. The development of naturally occurring cationic antimicrobial peptides (CAMPs) for therapeutics to combat antibiotic resistance has been hampered by high production costs and protease sensitivity, among other factors. The ceragenins are a family of synthetic CAMP mimics that kill a broad spectrum of bacterial species but are less expensive to produce, resistant to proteolytic degradation, and seemingly resistant to the development of high-level resistance. Determining how ceragenins function may identify new essential biological pathways of bacteria that are less prone to the development of resistance and will further our understanding of the design principles for maximizing the effects of synthetic CAMPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787472 | PMC |
http://dx.doi.org/10.1128/mbio.02726-21 | DOI Listing |
Sensors (Basel)
December 2024
Department of Physics, Yonsei University, Seoul 03722, Republic of Korea.
The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada.
Porcine blood, a significant byproduct of the pork industry, represents a potential source of antimicrobial peptides (AMPs). AMPs offer a promising alternative to chemical antimicrobials, which can be used as natural preservatives in the food industry. AMPs can exhibit both antibacterial and/or antifungal properties, thus improving food safety and addressing the growing concern of antibiotic and antifungal resistance.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35 Street, 60-637 Poznan, Poland.
Liver Enriched Antimicrobial Peptide 2 (LEAP2) is a fascinating peptide that has gained significant attention since its discovery in 2003. Initially identified as an antimicrobial peptide, LEAP2 has more recently been found to play a key role in the regulation of energy metabolism. One of the most notable functions of LEAP2 is its interaction with the ghrelin hormone, which is known for stimulating hunger.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia.
cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy.
Atopic dermatitis (AD) is a chronic inflammatory skin disorder influenced by proteins involved in skin barrier maintenance and vitamin D metabolism. Using an intra-patient design, this study compared protein expression in intra-lesional (IL) and peri-lesional (PL) skin biopsies from AD patients and examined associations between protein levels, vitamin D status, and clinical features. Forty-four biopsies from twenty-two AD patients were analyzed using antibody microarrays targeting twelve proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!