A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomimicking interfacial fracture behavior of lizard tail autotomy with soft microinterlocking structures. | LitMetric

Biological soft interfaces often exhibit complex microscale interlocking geometries to ensure sturdy and flexible connections. If needed, the interlocking can rapidly be released on demand leading to an abrupt decrease of interfacial adhesion. Here, inspired by lizard tail autotomy where such apparently tunable interfacial fracture behavior can be observed, we hypothesized an interlocking mechanism between the tail and body based on the muscle-actuated mushroom-shaped microinterlocks along the fracture planes. To mimic the fracture behavior of the lizard tail, we developed a soft bilayer patch that consisted of a dense array of soft hemispherical microstructures in the upper layer acting as mechanical interlocks with the counter body part. The bottom control layer contained a microchannel that allowed to deflect the upper layer when applying the negative pressure, thus mimicking muscle contraction. In the microinterlocked condition, the biomimetic tail demonstrated a 2.7-fold and a three-fold increase in adhesion strength and toughness, respectively, compared to the pneumatically released microinterlocks. Furthermore, as per the computational analysis, the subsurface microchannel in the control layer enabled augmented adhesion by rendering the interface more compliant as a dissipative matrix, decreasing contact opening and strain energy dissipation by 50%. The contrasting features between the microinterlocked and released cases demonstrated a highly tunable adhesion of our biomimetic soft patch. The potential applications of our study are expected in soft robotics and prosthetics.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/ac4e79DOI Listing

Publication Analysis

Top Keywords

fracture behavior
12
lizard tail
12
interfacial fracture
8
behavior lizard
8
tail autotomy
8
upper layer
8
control layer
8
soft
6
tail
5
biomimicking interfacial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!