We developed a method using cardiovascular magnetic resonance imaging to model the untwisting of the left ventricle (LV) as a damped torsional harmonic oscillator to estimate shear modulus (intrinsic myocardial stiffness) and frictional damping, then applied this method to evaluate the torsional stiffness of patients with resistant hypertension (RHTN) compared to a control group.The angular displacement of the LV during diastole was measured. Myocardial shear modulus and damping constant were determined by solving a system of equations modeling the diastolic untwisting as a damped, unforced harmonic oscillator, in 100 subjects with RHTN and 36 control subjects.Though overall torsional stiffness was increased in RHTN (41.7 (27.1-60.7) versus 29.6 (17.3-35.7) kdyn*cm; = 0.001), myocardial shear modulus was not different between RHTN and control subjects (0.34 (0.23-0.50) versus 0.33 (0.22-0.46) kPa;= 0.758). RHTN demonstrated an increase in overall diastolic frictional damping (6.13 ± 3.77 versus 3.35 ± 1.70 kdyn*cm*s;< 0.001), but no difference in damping when corrected for the overlap factor (74.3 ± 25.9 versus 68.0 ± 24.0 dyn*s/cm; = 0.201). There was an increase in the polar moment (geometric component of stiffness; 11.47 ± 6.95 versus 7.58 ± 3.28 cm;<0.001).We have developed a phenomenological method, estimating the intrinsic stiffness and relaxation properties of the LV based on restorative diastolic untwisting. This model finds increased overall stiffness in RHTN and points to hypertrophy, rather than tissue- level changes, as the major factor leading to increased stiffness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066283PMC
http://dx.doi.org/10.1088/1361-6579/ac4e6eDOI Listing

Publication Analysis

Top Keywords

harmonic oscillator
12
shear modulus
12
untwisting damped
8
frictional damping
8
torsional stiffness
8
myocardial shear
8
rhtn control
8
rhtn
5
versus
5
diastolic function
4

Similar Publications

Thermally Activated Delayed Fluorescence in B,N-Substituted Tetracene Derivatives: A Theoretical Pathway to Enhanced OLED Materials.

J Phys Chem A

January 2025

Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900 São Paulo, Brazil.

Polycyclic aromatic hydrocarbons (PAHs) exhibit intriguing characteristics that position them as promising candidates for advancements in organic semiconductor technologies. Notably, tetracene finds substantial utility in Electronics due to its application in organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). The strategic introduction of an isoelectronic boron-nitrogen (B,N) pair to replace a carbon-carbon pair in acenes introduces changes in the electronic structure, allowing for the controlled modulation of diradical characteristics.

View Article and Find Full Text PDF

Aims: This study aims explore the impact of catechol, dopamine, and L-DOPA on the stability and toxicity of β-amyloid peptides, which play a key role in the neurodegenerative process of Alzheimer's disease, to assess their potential as therapeutic agents.

Background: Alzheimer's disease is marked by the aggregation of β-amyloid peptides, which contribute to neurodegeneration. Exploring how various compounds interact with β-amyloid peptides can offer valuable insights into potential therapeutic strategies.

View Article and Find Full Text PDF

End-Point Affinity Estimation of Galectin Ligands by Classical and Semiempirical Quantum Mechanical Potentials.

J Chem Inf Model

January 2025

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague, Czech Republic.

The use of quantum mechanical potentials in protein-ligand affinity prediction is becoming increasingly feasible with growing computational power. To move forward, validation of such potentials on real-world challenges is necessary. To this end, we have collated an extensive set of over a thousand galectin inhibitors with known affinities and docked them into galectin-3.

View Article and Find Full Text PDF

Probing Berry Phase Effect in Topological Surface States.

Phys Rev Lett

December 2024

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.

We have observed the Berry phase effect associated with interband coherence in topological surface states (TSSs) using two-color high-harmonic spectroscopy. This Berry phase accumulates along the evolution path of strong field-driven electron-hole quasiparticles in electronic bands with strong spin-orbit coupling. By introducing a secondary weak field, we perturb the evolution of Dirac fermions in TSSs and thus provide access to the Berry phase.

View Article and Find Full Text PDF

The alchemical integral transform revisited.

J Chem Phys

January 2025

Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany.

We recently introduced the Alchemical Integral Transform (AIT), enabling the prediction of energy differences, and guessed an ansatz to parameterize space r in some alchemical change λ. Here, we present a rigorous derivation of AIT's kernel K and discuss the parameterization r(λ) in n dimensions, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!