PCA driven mixed filter pruning for efficient convNets.

PLoS One

iFhaja Research Consultation, Peshawar, KPK, Pakistan.

Published: February 2022

Deployment of the deep neural networks (DNNs) on resource-constrained devices is a challenging task due to their limited memory and computational power. In most cases, the pruning techniques do not prune the DNNs to full extent and redundancy still exists in these models. Considering this, a mixed filter pruning approach based on principal component analysis (PCA) and geometric median is presented. First, a pre-trained model is analyzed by using PCA to identify the important filters for every layer. These important filters are then used to reconstruct the network with a fewer number of layers and a fewer number of filters per layer. A new network with optimized structure is constructed and trained on the data. Secondly, the trained model is then analyzed using geometric median as a base. The redundant filters are identified and removed which results in further compression of the network. Finally, the pruned model is fine tuned to regain the accuracy. Experiments on CIFAR-10, CIFAR-100 and ILSVRC 2017 datasets show that the proposed mixed pruning approach is feasible and can compress the network to greater extent without any significant loss to accuracy. With VGG-16 on CIFAR-10, the number of operations and parameters are reduced to 18.56× and 3.33×, respectively, with almost 1% loss in the accuracy. The compression rate for AlexNet on CIFAR-10 dataset is 2.61× and 4.85× in terms of number of operations and number of parameters, respectively, with a gain of 1.2% in the accuracy. On CIFAR-100, VGG-19 is compressed by 16.02 X in terms of number of operations and 36× in terms of number of parameters with a 2.6% loss of accuracy. Similarly, the compression rate for VGG-19 network on ILSVRC 2017 dataset is 1.87× and 2.4× for operations and parameters with 0.5% loss in accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786156PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262386PLOS

Publication Analysis

Top Keywords

loss accuracy
16
number operations
12
terms number
12
mixed filter
8
filter pruning
8
pruning approach
8
geometric median
8
model analyzed
8
filters layer
8
fewer number
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!