At-will tailoring of the formation and reconfiguration of hierarchical structures is a key goal of modern nanomaterial design. Bioinspired systems comprising biomacromolecules and inorganic nanoparticles have potential for new functional material structures. Yet, consequential challenges remain because we lack a detailed understanding of the temporal and spatial interplay between participants when it is mediated by fundamental physicochemical interactions over a wide range of scales. Motivated by a system in which silica nanoparticles are reversibly and repeatedly assembled using a homobifunctional solid-binding protein and single-unit pH changes under near-neutral solution conditions, we develop a theoretical framework where interactions at the molecular and macroscopic scales are rigorously coupled based on colloidal theory and atomistic molecular dynamics simulations. We integrate these interactions into a predictive coarse-grained model that captures the pH-dependent reversibility and accurately matches small-angle X-ray scattering experiments at collective scales. The framework lays a foundation to connect microscopic details with the macroscopic behavior of complex bioinspired material systems and to control their behavior through an understanding of both equilibrium and nonequilibrium characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c04923DOI Listing

Publication Analysis

Top Keywords

theoretical framework
8
predictive theoretical
4
framework dynamic
4
dynamic control
4
control bioinspired
4
bioinspired hybrid
4
hybrid nanoparticle
4
nanoparticle self-assembly
4
self-assembly at-will
4
at-will tailoring
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!