A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unusual chalcogen⋯chalcogen interactions in like⋯like and unlike YCY⋯YCY complexes (Y = O, S, and Se). | LitMetric

Chalcogen⋯chalcogen interactions were investigated within four types of like⋯like and unlike YCY⋯YCY complexes (where Y = O, S, or Se). A plethora of quantum mechanical calculations, including molecular electrostatic potential (MEP), surface electrostatic potential extrema, point-of-charge (PoC), quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI), and symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) calculations, were executed. The energetic findings revealed a preferential tendency of the studied chalcogen-bearing molecules to engage in type I, II, III, or IV chalcogen⋯chalcogen interactions. Notably, the selenium-bearing molecules exhibited the most potent ability to favorably participate in all the explored chalcogen⋯chalcogen interactions. Among like⋯like complexes, type IV interactions showed the most favorable negative binding energies, whereas type III interactions exhibited the weakest binding energies. Unexpectedly, oxygen-containing complexes within type IV interactions showed an alien pattern of binding energies that decreased along with an increase in the chalcogen atomic size level. QTAIM analysis provided a solo BCP, chalcogen⋯chalcogen interactions, with no clues as to any secondary ones. SAPT-EDA outlined the domination of the explored interactions by the dispersion forces and indicated the pivotal shares of the electrostatic forces, except type III σ-hole⋯σ-hole and di-σ-hole interactions. These observations demonstrate in better detail all the types of chalcogen⋯chalcogen interactions, providing persuasive reasons for their more intensive use in versatile fields related to materials science and drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp02706aDOI Listing

Publication Analysis

Top Keywords

chalcogen⋯chalcogen interactions
24
type iii
12
binding energies
12
interactions
11
interactions like⋯like
8
electrostatic potential
8
complexes type
8
type interactions
8
chalcogen⋯chalcogen
5
type
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!