A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accuracy evaluation of 3D-printed guide-assisted flapless micro-osteoperforations in the anterior mandible. | LitMetric

Aim: To evaluate the accuracy of tridimensional (3D)-printed guide-assisted flapless cortical bone micro-osteoperforations (MOPs) in the anterior mandible on a cadaver model.

Materials And Methods: Five human cadaver heads with complete dentition in the anterior mandible were used in the present study. Preplanning CBCT and intraoral surface scans were obtained. After alignment, drilling sites in the interradicular areas were planned from canine to canine, and a surgical guide was printed. The drilling was performed and a postprocedure CBCT scan was obtained to assess the accuracy of the procedure in relation to the virtual planning.

Results: The mean ± standard deviation (SD) mesiodistal interradicular space was 2.67 ± 0.84 mm. The mean ± SD error of the actual drilled hole compared with the planned position of the mesial drill site was 0.66 ± 0.33 mm, and to the distal drill site it was 0.56 ± 0.33 mm. There was a statistically significant difference between the number of times the teeth were hit mesially (10 out of 64 holes) and distally (none).

Conclusions: The proposed technique, limited to an ex vivo scenario, provides a valid and reliable method for mandibular MOPs using a 3D-generated surgical guide. However, the risk of damaging adjacent radicular surfaces, particularly in areas with limited mesiodistal interradicular bone, needs to be considered. Further studies should focus on using thinner drills and adding other methods to stabilize the guide. Additionally, by selecting individuals and perforation sites with more mesiodistal interradicular bone, less damage is likely. (Int J Comput Dent 2022;25(4):387-0; doi: 10.3290/j.ijcd.b2599841).

Download full-text PDF

Source
http://dx.doi.org/10.3290/j.ijcd.b2599841DOI Listing

Publication Analysis

Top Keywords

anterior mandible
12
mesiodistal interradicular
12
3d-printed guide-assisted
8
guide-assisted flapless
8
surgical guide
8
drill site
8
interradicular bone
8
accuracy evaluation
4
evaluation 3d-printed
4
flapless micro-osteoperforations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!