The prognosis of colorectal cancer (CRC), one of the most prevalent pathologies worldwide, is linked to early detection. Kudo's pit pattern classification states morphological pit patterns of the Lieberkühn crypts by analyzing the superficial mucosa, predicting the histology of colorectal lesions. Its use as a highly accurate two-dimensional diagnostic criterion has increased, mostly involving expert endoscopists' judgment. The processing of autofluorescence images could allow the diagnostic, bypassing staining techniques and decreasing the biopsies, resources and times involved in the inspection. That criterion could be extended by data of the pit three-dimensional (3D) morphology. Thus, this work was aimed at obtaining 3D morphological information by quantifying geometrical and shape descriptors through software processing and analysis of widefield autofluorescence microscopy image stacks acquired by fresh colon tissue samples from a murine model of CRC. Statistical analyses included pits from control mice and from the second (2nd), fourth (4th), and eighth (8th) weeks of treatment. Statistically significant differences were found for almost all parameters between the pits from control and from the 4th treated week, stating that the major morphological changes begin after the 2nd week. In particular, pits from control or initial treatment time points were more tubular, straighter and less rough than the ones from later treatment points. Therefore, they may be more associated to normal or non-neoplastic crypt lumens than linked to adenomas or even cancer crypts. These preliminary outcomes could be considered an advance in 3D pit morphology characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.24055 | DOI Listing |
Willows (genus ) are increasingly used in operational-scale ecosystem reclamation; however, different opinions exist regarding the optimal cutting size for planting under field conditions. We compared the survival of field-planted willow cuttings sourced from upland and lowland areas with varying diameters and lengths across two growing seasons. Cuttings were grouped into 15 size classes with different diameters (0.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Mechanical Engineering, The University of Memphis, Memphis, TN 38152, USA.
Microbubbles, acting as cavitation nuclei, undergo cycles of expansion, contraction, and collapse. This collapse generates shockwaves, alters local shear forces, and increases local temperature. Cavitation causes severe changes in pressure and temperature, resulting in surface erosion.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Life Sciences, Xiamen University, Xiamen, 361102, China.
The gastric mucosal barrier, through its gastric pits, serves as a pathway for secretions, ensuring that mucus produced by the gastric glands is transferred to the gastric lumen, providing stable protection. Here a bioinspired liquid pockets material is shown, composed of a thermo-driven hydrogel that acts as an external activation unit to release interflowing liquid responsively, and porous matrices that serve as interconnected pockets to transfer it, enabling controlled internal flow and adaptive barrier functionality. Experiments and theoretical analysis demonstrate the stability and regulatory mechanisms of these liquid pockets, based on the interconnected pockets between the external activation unit and internal fluid flow.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Communication Department, California State Polytechnic University, Pomona, CA, USA.
Recent surges in COVID-19 cases demonstrate the unabated transmissibility of this disease. Despite the ongoing threat of contagion, however, uptake of the COVID-19 vaccines, especially as booster doses, remains suboptimal among eligible adults and children in the United States, as reported by the World Health Organization (WHO). Public attitudes toward these vaccines remain balkanized, with some groups harboring ambivalence or even opposition to receiving inoculation.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Dunhuang Gobi Desert Ecology and Environment Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
The Desert oasis ecotone (DOE) protects the oasis from wind and sand intrusion, thereby playing a crucial role in controlling desertification. However, there is limited knowledge about how DOE functions in windproof and sand-fixation. Therefore this study employs a three-dimensional (3D) laser scanner to monitor surface accumulation and erosion, and through field observations, collects data on wind profiles, grain size, and sand transport rates to uncover the role of DOE in aeolian sand protection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!