The coke reactivity index and coke strength after reaction are critical parameters for the efficient operation of a blast furnace. Therefore, maintaining desired qualities of the produced coke as per coal blend chemistry and coke oven battery parameters is essential. However, the coke reactivity index (CRI) and coke strength after reaction (CSR) vary from laboratory to laboratory even though they have the same determination methodology. In the present investigation, a unique laboratory sample holder for reactivity test has been developed. The test method by Nippon Steel Corporation (NSC) has been compared with the newly developed sample holder method. The correlation between coke CRI and CSR has been studied with samples with a wide range of reactivity in the repeatability test. Results confirmed that the reactivity of coke highly depends on the reaction of individual coke pieces participating in the test. Despite undergoing strict process monitoring of the testing procedure of hot strength of coke, the present study confirmed that a variation of ±2 points in coke CSR and CRI does not affect coke quality in a single reading. The study also includes the influence of the number of coke pieces in the test sample to optimize the coke bed height. This paper described in detail the methodologies adopted, addressing the factors resulting in differences in CRI/CSR values within the same coke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8771692PMC
http://dx.doi.org/10.1021/acsomega.1c04270DOI Listing

Publication Analysis

Top Keywords

coke
17
coke reactivity
12
coke strength
12
strength reaction
12
reactivity cri
8
cri coke
8
reaction csr
8
reactivity coke
8
sample holder
8
coke pieces
8

Similar Publications

Sustainable CO Capture: N,S-Codoped Porous Carbons Derived from Petroleum Coke with High Selectivity and Stability.

Molecules

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.

CO capture from the flue gas is a promising approach to mitigate global warming. However, regulating the carbon-based adsorbent in terms of textural and surface modification is still a challenge. To overcome this issue, the present study depicts the development of cost-effective and high-performance CO adsorbents derived from petroleum coke, an industrial by-product, using a two-step process involving thiourea modification and KOH activation.

View Article and Find Full Text PDF

Biodegradation of Phenol at High Initial Concentration by 3D Strain: Biochemical and Genetic Aspects.

Microorganisms

January 2025

Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia.

Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant.

View Article and Find Full Text PDF

The chemical looping co-gasification of nitrogen-containing algal biomass and coal could effectively realize the high-value utilization of gasification products, but the mechanism of conversion of nitrogen-containing pollutants is not clear. In this work, the effects of the different ratios of microalgae on the co-gasification process were first explored, and the results showed that the 40 % coal + 60 % microalgae blending had the best synergistic effect, with a comprehensive synergistic index (CSI) of 1.35 as the maximum value.

View Article and Find Full Text PDF

Investigating the Flexibility of H-ZSM-5 Zeolite Upon Adsorption of Coke Precursors: A Theoretical and Experimental Approach.

J Phys Chem C Nanomater Interfaces

January 2025

Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway.

The flexibility of the H-ZSM-5 zeolite upon adsorption of selected coke precursors was investigated using both theoretical and experimental approaches. Four structural models with varying active site locations were analyzed through density functional theory (DFT) simulations to determine their responses to different types and quantities of aromatic molecules. Complementary experimental analysis was performed, allowing for a direct comparison with the theoretical findings, using thermogravimetric analysis (TGA), nitrogen adsorption (N adsorption), solid-state NMR, and X-ray diffraction (XRD).

View Article and Find Full Text PDF

The photocatalytic nonoxidative coupling of methane (PNOCM) offers a promising route to synthesize valuable C2+ hydrocarbons while minimizing side reactions. Oxide-based photocatalysts have been predominant in this field, but suffering from limited conversion rates, selectivity, and durability due to poor C-C coupling as well as overoxidation of CH4 by lattice oxygen. Here, we introduce an advancement in PNOCM for methane conversion into ethane and propane using GaN, one of the most produced semiconductors, together with trace amounts of metallic cobalt clusters (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!