Background: Cerebrovascular disease is a common clinical illness. Many patients with cerebrovascular disease can be accompanied by cognitive impairment. The exosomal microRNA (miRNA)-223-3p is related to vascular endothelial injury, synaptic function, inflammatory response, and other mechanisms. In this study, we investigated the levels of plasma exosomal miRNA-223-3p in patients with cerebral small vessel disease (CSVD), in order to determine whether it could be used as a more accessible potential biomarker for the early diagnosis and treatment of CSVD. This study aimed to explore whether the development of cognitive impairment can be explained by differentially expressed miRNA-223-3p by detecting the level of miRNA-223-3p, which is abundant in peripheral blood exosomes related to cognitive impairment in CSVD.
Methods: The three groups of participants included 40 patients with CSVD cognitive impairment (CSVDCI), 38 patients with CSVD, and 35 normal controls (NC). The real-time polymerase chain reaction (RT-PCR) was used to detect the expression level of blood exosomal miRNA-223-3p. In addition, we also studied the relationship between exosomal miRNA-223-3p and blood Hcy and C-reactive protein (CRP). Receiver-operating characteristic (ROC) curve analysis was used to evaluate the diagnostic efficacy of plasma exosomal miRNA-223-3p.
Results: The expression of exosomal miRNA-223-3p in CSVD increased, and the expression of miRNA-223-3p increased significantly with the occurrence of cognitive impairment. Exosomal miRNA-223-3p was positively correlated with the expression levels of Hcy and CRP in the blood.
Conclusions: The expression of plasma exosomal miRNA-223-3p is associated with the development of cognitive impairment in patients with CSVD. It may be involved in the pathogenesis of CSVD and cognitive impairment, and can be used as a sensitive predictive biomarker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756253 | PMC |
http://dx.doi.org/10.21037/atm-21-6086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!