Metabolic reprogramming is recognized as one of the hallmarks of cancer. Alterations in the micro-environmental metabolic characteristics are recognized as important tools for cancer cells to interact with the resident and infiltrating T-cells within this tumor microenvironment. Cancer-induced metabolic changes in the micro-environment also affect treatment outcomes. In particular, immune therapy efficacy might be blunted because of somatic mutation-driven metabolic determinants of lung cancer such as acidity and oxygenation status. Based on these observations, new onco-immunological treatment strategies increasingly include drugs that interfere with metabolic pathways that consequently affect the composition of the lung cancer tumor microenvironment (TME). Positron emission tomography (PET) imaging has developed a wide array of tracers targeting metabolic pathways, originally intended to improve cancer detection and staging. Paralleling the developments in understanding metabolic reprogramming in cancer cells, as well as its effects on stromal, immune, and endothelial cells, a wave of studies with additional imaging tracers has been published. These tracers are yet underexploited in the perspective of immune therapy. In this review, we provide an overview of currently available PET tracers for clinical studies and discuss their potential roles in the development of effective immune therapeutic strategies, with a focus on lung cancer. We report on ongoing efforts that include PET/CT to understand the outcomes of interactions between cancer cells and T-cells in the lung cancer microenvironment, and we identify areas of research which are yet unchartered. Thereby, we aim to provide a starting point for molecular imaging driven studies to understand and exploit metabolic features of lung cancer to optimize immune therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779734PMC
http://dx.doi.org/10.3389/fonc.2021.786089DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
immune therapy
16
cancer cells
12
cancer
11
metabolic
8
metabolic reprogramming
8
tumor microenvironment
8
metabolic pathways
8
lung
6
immune
6

Similar Publications

Population pharmacokinetics of erlotinib in patients with non-small cell lung cancer (NSCLC): A model-based meta-analysis.

Comput Biol Med

January 2025

Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon, Republic of Korea; Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea; Department of Integrative Biotechnology, Yonsei University, Incheon, Republic of Korea. Electronic address:

Background: Erlotinib is a potent first-generation epidermal growth factor receptor tyrosine kinase inhibitor. Due to its proximity to the upper limit of tolerability, dose adjustments are often necessary to manage potential adverse reactions resulting from its pharmacokinetic (PK) variability.

Methods: Population PK studies of erlotinib were identified using PubMed databases.

View Article and Find Full Text PDF

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

The association between Chlamydia pneumoniae infection and prognosis in lung cancer patients: a prospective study.

BMC Infect Dis

January 2025

Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.

Background: The prognostic value of Chlamydia pneumoniae (Cpn) infection in postoperative lung cancer patients remains unclear. This study aimed to evaluate the association between Cpn infection and survival in lung cancer patients.

Methods: This study included 309 newly diagnosed primary lung cancer patients from three hospitals in Fuzhou, China.

View Article and Find Full Text PDF

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

Trousseau's syndrome is a thromboembolic disorder associated with malignancies, with cerebral infarction and hemorrhage representing common central nervous system complications in patients with cancer. This report details the diagnosis and treatment of a patient with gastric adenocarcinoma at our institution who concurrently developed cerebral infarction and subarachnoid hemorrhage. We performed a comprehensive literature review in the Wanfang and PubMed databases, searching for relevant studies on Trousseau's syndrome, cerebral embolism, and subarachnoid hemorrhage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!