A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the dynamics of coronavirus with super-spreader class: A fractal-fractional approach. | LitMetric

Super-spreaders of the novel coronavirus disease (or COVID-19) are those with greater potential for disease transmission to infect other people. Understanding and isolating the super-spreaders are important for controlling the COVID-19 incidence as well as future infectious disease outbreaks. Many scientific evidences can be found in the literature on reporting and impact of super-spreaders and super-spreading events on the COVID-19 dynamics. This paper deals with the formulation and simulation of a new epidemic model addressing the dynamics of COVID-19 with the presence of super-spreader individuals. In the first step, we formulate the model using classical integer order nonlinear differential system composed of six equations. The individuals responsible for the disease transmission are further categorized into three sub-classes, i.e., the symptomatic, super-spreader and asymptomatic. The model is parameterized using the actual infected cases reported in the kingdom of Saudi Arabia in order to enhance the biological suitability of the study. Moreover, to analyze the impact of memory index, we extend the model to fractional case using the well-known Caputo-Fabrizio derivative. By making use of the Picard-Lindelöf theorem and fixed point approach, we establish the existence and uniqueness criteria for the fractional-order model. Furthermore, we applied the novel fractal-fractional operator in Caputo-Fabrizio sense to obtain a more generalized model. Finally, to simulate the models in both fractional and fractal-fractional cases, efficient iterative schemes are utilized in order to present the impact of the fractional and fractal orders coupled with the key parameters (including transmission rate due to super-spreaders) on the pandemic peaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760654PMC
http://dx.doi.org/10.1016/j.rinp.2022.105179DOI Listing

Publication Analysis

Top Keywords

disease transmission
8
model
6
modeling dynamics
4
dynamics coronavirus
4
coronavirus super-spreader
4
super-spreader class
4
class fractal-fractional
4
fractal-fractional approach
4
super-spreaders
4
approach super-spreaders
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!