Trophic niche but not abundance of Collembola and Oribatida changes with drought and farming system.

PeerJ

Animal Ecology, J.F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany.

Published: January 2023

AI Article Synopsis

  • Higher summer drought frequencies are expected to alter soil conditions, impacting soil fauna like microarthropods and their interactions in agroecosystems.
  • Different management practices may influence how drought affects soil biota by changing food resource availability.
  • Stable isotope analysis revealed that drought and farming systems didn't impact the abundance of microarthropods, but their diets varied, suggesting that resource flexibility helps mitigate drought effects in agricultural settings.

Article Abstract

Higher frequencies of summer droughts are predicted to change soil conditions in the future affecting soil fauna communities and their biotic interactions. In agroecosystems drought effects on soil biota may be modulated by different management practices that alter the availability of different food resources. Recent studies on the effect of drought on soil microarthropods focused on measures of abundance and diversity. We here additionally investigated shifts in trophic niches of Collembola and Oribatida as indicated by stable isotope analysis (C and N). We simulated short-term summer drought by excluding 65% of the ambient precipitation in conventionally and organically managed winter wheat fields on the DOK trial in Switzerland. Stable isotope values suggest that plant litter and root exudates were the most important resources for Collembola (, and ) and older plant material and microorganisms for Oribatida ( and ). Drought treatment and farming systems did not affect abundances of the studied species. However, isotope values of some species increased in organically managed fields indicating a higher proportion of microorganisms in their diet. Trophic niche size, a measure of both isotope values combined, decreased with drought and under organic farming in some species presumably due to favored use of plants as basal resource instead of algae and microorganisms. Overall, our results suggest that the flexible usage of resources may buffer effects of drought and management practices on the abundance of microarthropods in agricultural systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761369PMC
http://dx.doi.org/10.7717/peerj.12777DOI Listing

Publication Analysis

Top Keywords

isotope values
12
trophic niche
8
collembola oribatida
8
management practices
8
stable isotope
8
organically managed
8
drought
7
niche abundance
4
abundance collembola
4
oribatida changes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!