Elder emotion classification through multimodal fusion of intermediate layers and cross-modal transfer learning.

Signal Image Video Process

Department of Electrical and Electronics Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India.

Published: January 2022

The objective of the work is to develop an automated emotion recognition system specifically targeted to elderly people. A multi-modal system is developed which has integrated information from audio and video modalities. The database selected for experiments is ElderReact, which contains 1323 video clips of 3 to 8 s duration of people above the age of 50. Here, all the six available emotions Disgust, Anger, Fear, Happiness, Sadness and Surprise are considered. In order to develop an automated emotion recognition system for aged adults, we attempted different modeling techniques. Features are extracted, and neural network models with backpropagation are attempted for developing the models. Further, for the raw video model, transfer learning from pretrained networks is attempted. Convolutional neural network and long short-time memory-based models were taken by maintaining the continuity in time between the frames while capturing the emotions. For the audio model, cross-model transfer learning is applied. Both the models are combined by fusion of intermediate layers. The layers are selected through a grid-based search algorithm. The accuracy and F1-score show that the proposed approach is outperforming the state-of-the-art results. Classification of all the images shows a minimum relative improvement of 6.5% for happiness to a maximum of 46% increase for sadness over the baseline results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763433PMC
http://dx.doi.org/10.1007/s11760-021-02079-xDOI Listing

Publication Analysis

Top Keywords

transfer learning
12
fusion intermediate
8
intermediate layers
8
develop automated
8
automated emotion
8
emotion recognition
8
recognition system
8
neural network
8
elder emotion
4
emotion classification
4

Similar Publications

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Machine learning and multi-omics in precision medicine for ME/CFS.

J Transl Med

January 2025

Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition's heterogeneity and the lack of validated biomarkers. The growing field of precision medicine offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients.

View Article and Find Full Text PDF

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.

View Article and Find Full Text PDF

Blood from septic patients with necrotising soft tissue infection treated with hyperbaric oxygen reveal different gene expression patterns compared to standard treatment.

BMC Med Genomics

January 2025

Department of Anaesthesiology, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen, 2100, Denmark.

Background: Sepsis and shock are common complications of necrotising soft tissue infections (NSTI). Sepsis encompasses different endotypes that are associated with specific immune responses. Hyperbaric oxygen (HBO) treatment activates the cells oxygen sensing mechanisms that are interlinked with inflammatory pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!