Background: Using network pharmacology and molecular docking, this study aimed to explore the active pharmaceutical ingredients (APIs) and molecular mechanism of Qinshi Simiao San (QSSMS) in the treatment of chronic prostatitis (CP) and verify our findings in the rat model.

Methods: The APIs of QSSMS and the common targets of QSSMS and CP were screened from the TCMSP database. The STRING database and Cytoscape software were used to construct the network graph. The enriched GO and KEGG pathways were displayed by David software and R software. Molecular docking was performed to visualize key components and target genes. In addition, the rats model of CP was established to verify the molecular mechanism of QSSMS.

Results: Network pharmacology showed that the APIs of QSSMS mainly included quercetin, kaempferol, formononetin, isorhamnetin, and calycosin. QSSMS alleviated CP mainly through the negative regulation of the apoptotic process, oxidation-reduction process, inflammatory response, and immune response. Molecular docking showed that the APIs could bind to the corresponding targets. QSSMS repaired the pathological damage of prostate tissue, upregulated the expression of oxidative stress scavenging enzymes CAT and SOD, and downregulated the peroxidative product MDA, inflammatory factors IL-1, IL-6, TNF-, COX-2, PGE2, and NGF, and immune factors IgG and SIgA.

Conclusion: The APIs in QSSMS may inhibit inflammation in the rat CP model by regulating immune and oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769824PMC
http://dx.doi.org/10.1155/2022/7098121DOI Listing

Publication Analysis

Top Keywords

molecular docking
16
network pharmacology
12
apis qssms
12
pharmacology molecular
8
mechanism qinshi
8
qinshi simiao
8
simiao san
8
chronic prostatitis
8
rat model
8
molecular mechanism
8

Similar Publications

[Not Available].

Postepy Biochem

December 2024

Katedra Biotechnologii, Wydział Nauk Biologicznych, Uniwersytet Zielonogórski.

Koronawirusy wywołują choroby dróg oddechowych, przewodu pokarmowego i centralnego układu nerwowego, które zagrażają zdrowiu ludzkiemu i przyczyniają się do strat ekonomicznych. Nowatorskie technologie wytwarzania powodują możliwość wykorzystania związków bioaktywnych jako czynników przeciwwirusowych. Większość owoców, warzyw oraz produktów pochodzenia roślinnego zawiera w składzie flawonoidy.

View Article and Find Full Text PDF

This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.

View Article and Find Full Text PDF

Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane.

View Article and Find Full Text PDF

Echinococcosis is a zoonotic infectious disease that poses a significant threat to the health of individuals living in rural regions. While vaccination represents a potential strategy for disease prevention, there is currently no effective vaccine available for humans to prevent cystic echinococcosis (CE). This study aimed to design a novel multi-epitope vaccine (MEV) against Echinococcus granulosus for human use, employing immunoinformatics methods.

View Article and Find Full Text PDF

Angiotensin-converting enzyme (ACE) is a key regulator of blood pressure, and ACE inhibition is an essential part of the treatment of hypertension. We used a molecular docking approach to find the interaction of ACE with an active flavonoid isolated from Linn, , which leads to potential antihypertensive effects in methyl predenisolone-induced hypertensive rats. Additionally, the pharmacokinetic parameters of this compound are assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!