Background: Maintenance of a normal fetal nutrient supply requires major adaptations in maternal metabolic physiology, including of the islet beta-cell. The role of lipid signaling processes in the mechanisms of islet beta-cell adaptation to pregnancy has been minimally investigated.
Objective: To determine the effects of pregnancy on islet fatty acid (FA) metabolic partitioning and FA augmentation of glucose-stimulated insulin secretion (GSIS).
Methods: Age matched virgin, early pregnant (gestational day-11, G11) and late pregnant (G19) Sprague-Dawley rats were studied. Fasted and fed state biochemistry, oral glucose tolerance tests (OGTT), and fasted and post-OGTT liver glycogen, were determined to assess metabolic characteristics. In isolated islets, FA (BSA-bound palmitate 0.25 mmol/l) augmentation of GSIS, FA partitioning into esterification and oxidation processes using metabolic tracer techniques, lipolysis by glycerol release, triacylglycerols (TG) content, and the expression of key beta-cell genes were determined.
Results: Plasma glucose in pregnancy was lower, including during the OGTT (glucose area under the curve 0-120 min (AUC); 655±24 versus 849±13 mmol.l.min; G19 virgin; <0.0001), with plasma insulin concentrations equivalent to those of virgin rats (insulin AUC; 97±7 versus 83±7 ng.ml.min; G19 vs virgin; not significant). Liver glycogen was depleted in fasted G19 rats with full recovery after oral glucose. Serum TG increased during pregnancy (4.4±0.4, 6.7±0.5; 17.1±1.5 mmol/l; virgin, G11, G19, <0.0001), and islet TG content decreased (147±42, 172±27, 73±13 ng/µg protein; virgin, G11, G19; <0.01). GSIS in isolated islets was increased in G19 compared to virgin rats, and this effect was augmented in the presence of FA. FA esterification into phospholipids, monoacylglycerols and TG were increased, whereas FA oxidation was reduced, in islets of pregnant compared to virgin rats, with variable effects on lipolysis dependent on gestational age. Expression of , a key regulator of mitochondrial metabolism, was reduced by 51% in G11 and 64% in G19 pregnant rat islets compared to virgin rat islets (<0.001).
Conclusion: A lowered set-point for islet and hepatic glucose homeostasis in the pregnant rat has been confirmed. Islet adaptation to pregnancy includes increased FA esterification, reduced FA oxidation, and enhanced FA augmentation of glucose-stimulated insulin secretion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766493 | PMC |
http://dx.doi.org/10.3389/fendo.2021.799081 | DOI Listing |
Artif Organs
January 2025
Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland.
Intrahepatic islet transplantation is a promising strategy for β-cell replacement therapy in the treatment of Type 1 Diabetes. However, several obstacles hinder the long-term efficacy of this therapy. A major challenge is the scarcity of donor organs.
View Article and Find Full Text PDFEndocrinology
January 2025
Australian National University School of Medicine and Psychology, Australian National University, Acton, ACT, 0200, Australia.
Context: The obesity epidemic parallels an increasing type 1 diabetes incidence, such that westernized diets, containing high fat, sugar and/or protein, through inducing nutrient-induced islet beta-cell stress, have been proposed as contributing factors. The broad-spectrum neutral amino acid transporter (B0AT1), encoded by Slc6a19, is the major neutral amino acids transporter in intestine and kidney. B0AT1 deficiency in C567Bl/6J mice, causes aminoaciduria, lowers insulinemia and improves glucose tolerance.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
UR Diabète et Thérapeutiques, Centre européen d'étude du Diabète, Université de Strasbourg, Strasbourg, France.
Aim: Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects.
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Objective: This study aimed to investigate the impact of electroacupuncture (EA) on blood glucose levels, gut microbiota, short-chain fatty acids (SCFAs), and glucagon-like peptide-1 (GLP-1) in a rat model of type 2 diabetes mellitus (T2DM).
Methods: Forty Sprague-Dawley (SD) rats were randomly assigned to five groups (n = 8/group) using a random number table: normal control, T2DM model, electroacupuncture (EA), EA + antibiotics (EA + A), and antibiotics (A). The normal rats received a standard diet and saline gavage, while the other groups were fed a high-fat diet and emulsion.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!