Age-specific resources in human MRI mitigate processing biases that arise from structural changes across the lifespan. There are fewer age-specific resources for preclinical imaging, and they only represent developmental periods rather than adulthood. Since rats recapitulate many facets of human aging, it was hypothesized that brain volume and each tissue's relative contribution to total brain volume would change with age in the adult rat. Data from a longitudinal study of rats at 3, 5, 11, and 17 months old were used to test this hypothesis. Tissue volume was estimated from high resolution structural images using information from tissue probability maps. However, existing tissue probability maps generated inaccurate gray matter probabilities in subcortical structures, particularly the thalamus. To address this issue, gray matter, white matter, and CSF tissue probability maps were generated by combining anatomical and signal intensity information. The effects of age on volumetric estimations were then assessed with mixed-effects models. Results showed that herein estimation of gray matter volumes better matched histological evidence, as compared to existing resources. All tissue volumes increased with age, and the tissue proportions relative to total brain volume varied across adulthood. Consequently, a set of rat brain templates and tissue probability maps from across the adult lifespan is released to expand the preclinical MRI community's fundamental resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777032 | PMC |
http://dx.doi.org/10.3389/fninf.2021.669049 | DOI Listing |
Background: Systemic sclerosis (SSc) is a rare connective tissue disease, frequently affecting the skin, lungs, and pulmonary vasculature. Approximately 30-50% of SSc patients develop interstitial lung disease (SSc-ILD), with 30-35% of related deaths attributed to it. Even though men are less likely to develop systemic sclerosis, they have a higher incidence of SSc-ILD than women, and they tend to develop it at a younger age with a higher mortality rate.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiation Oncology, Henry Ford Hospital, Detroit, USA.
Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel's CA time-trace.
View Article and Find Full Text PDFRheumatol Int
January 2025
Copenhagen Research Center for Autoimmune Connective Tissue Diseases (COPEACT), Copenhagen University Hospital, Rigshospitalet, Denmark.
To investigate if progression of coronary artery calcification (CAC) in patients with systemic lupus erythematosus (SLE) is associated with renal and traditional cardiovascular risk factors as well as incidence of myocardial infarctions. CAC progression was evaluated by cardiac computed tomography (CT) at baseline and after 5 years. Multivariable Poisson regression was applied to investigate associations between CAC progression and baseline values for traditional cardiovascular risk factors, CAC, SLE disease duration, lupus nephritis, and renal function.
View Article and Find Full Text PDFInbreeding depression poses a severe threat to small populations, leading to the fixation of deleterious mutations and decreased survival probability. While the establishment of natural gene flow between populations is an ideal long-term solution, its practical implementation is often challenging. Reinforcement of populations by translocating individuals from larger populations is a viable strategy for reducing inbreeding, increasing genetic diversity and potentially saving populations from extinction.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.
Background And Purpose: Radiotherapy for brain, head & neck (HN), and skull base (SB) tumors may deliver significant radiation dose to the hypothalamic-pituitary axis (HPA), leading to impaired functioning of this region and hence, to endocrine disorders. The purpose of this systematic review and -analysis is to investigate literature on HP dysfunction after radiation for non-pituitary brain, HN, or SB tumors at adult age, aiming to give insight in the prevalence of HP dysfunction related to radiation dose.
Materials And Methods: Literature search of the PubMed database was performed for HP dysfunction after radiotherapy in adult patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!