The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors' radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate and model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766818 | PMC |
http://dx.doi.org/10.3389/fnins.2021.817218 | DOI Listing |
Curr Top Dev Biol
January 2025
Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States. Electronic address:
All-trans RA (ATRA) is a small molecule derived from retinol (vitamin A) that directly controls gene expression at the transcriptional level by serving as a ligand for nuclear ATRA receptors. ATRA is produced by ATRA-generating enzymes that convert retinol to retinaldehyde (retinol dehydrogenase; RDH10) followed by conversion of retinaldehyde to ATRA (retinaldehyde dehydrogenase; ALDH1A1, ALDH1A2, or ALDH1A3). Determining what ATRA normally does during vertebrate development has been challenging as studies employing ATRA gain-of-function (RA treatment) often do not agree with genetic loss-of-function studies that remove ATRA via knockouts of ATRA-generating enzymes.
View Article and Find Full Text PDFCraniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks).
View Article and Find Full Text PDFGamma oscillations are disrupted in various neurological disorders, including Alzheimer's disease (AD). In AD mouse models, non-invasive audiovisual stimulation (AuViS) at 40 Hz enhances gamma oscillations, clears amyloid-beta, and improves cognition. We investigated mechanisms of circuit remodeling underlying these restorative effects by leveraging the sensitivity of hippocampal neurogenesis to activity in middle-aged wild-type mice.
View Article and Find Full Text PDFPrimary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation.
View Article and Find Full Text PDFDuring nervous system development, diverse types of neurons and glia are sequentially generated by self-renewing neural stem cells (NSCs). Temporal changes in gene expression within NSCs are thought to regulate neural diversity; however, the mechanisms regulating the timing of these temporal gene transitions remain poorly understood. type II NSCs, like human outer radial glia, divide to self-renew and generate intermediate neural progenitors, amplifying and diversifying the population of neurons innervating the central complex, a brain region required for sensorimotor coordination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!