Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacterial swarming motility is a common microbiological phenotype that bacterial communities use to migrate over semisolid surfaces. In investigations of induced swarming motility, specific concentration of an inducer may not be able to report events occurring within the optimal concentration range to elicit the desired responses from a species. Semisolid plates containing multiple concentrations are commonly used to investigate the response within an inducer concentration range. However, separate semisolid plates increase variations in medium viscosity and moisture content within each plate due to nonuniform solidification time. This paper describes a one-step method to simultaneously test surface swarming motility on a single gradient plate, where the isometrically arranged test wells allow the simultaneous acquisition of multiconcentration responses. In the present work, the surface swarming of Escherichia coli K12 and Pseudomonas aeruginosa PAO1 were evaluated in response to a concentration gradient of inducers such as resveratrol and arabinose. Periodically, the swarm morphologies were imaged using an imaging system to capture the entire surface swarming process. The quantitative measurement of the swarm morphologies was acquired using ImageJ software, providing analyzable information of the swarm area. This paper presents a simple gradient swarm plate method that provides qualitative and quantitative information about the inducers' effects on surface swarming, which can be extended to study the effects of other inducers on a broader range of motile bacterial species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/63382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!