Direct Visualization of Dynamic Mobility of LiO in Li-O Batteries: A Differential Interference Microscopy Study.

ACS Appl Mater Interfaces

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.

Published: February 2022

The reversibility and the discharge/charge performance in nonaqueous lithium-oxygen (Li-O) batteries are critically dependent on the kinetics of interfacial reactions. However, the interfacial reaction dynamic behaviors, especially the quantitative analysis, are still far from deep understanding. Using the method of laser confocal microscopy combined with differential interference contrast microscopy (LCM-DIM), we monitored the Li-O interfacial reaction and in situ traced the LiO migration processes promoted by the solution catalyst. Different dynamic behaviors exist when regulating the concentration of the redox mediator. Quantitative analysis of the discharged LiO particles shows high mobility at the early discharge stage and decayed motion in the subsequent process, indicating the solution-mediated pathway participating LiO formation in the low-concentration redox mediator addition, while particles/aggregates confined into the amorphous film demonstrate simultaneous solution and surface route-mediated pathway participation in the high-concentration case. These distinctive observations of LiO formation and decomposition processes present the advantage of LCM-DIM to fundamentally understand the dynamic evolution in Li-O batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c22004DOI Listing

Publication Analysis

Top Keywords

li-o batteries
12
differential interference
8
interfacial reaction
8
dynamic behaviors
8
quantitative analysis
8
redox mediator
8
lio formation
8
lio
5
direct visualization
4
dynamic
4

Similar Publications

Proposing lithium pump mechanism for observing Ag-Li two-phase interface reaction of in-situ Li-O battery by two-step method.

J Colloid Interface Sci

January 2025

Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 China; Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China. Electronic address:

Article Synopsis
  • Silver (Ag) is a key catalyst in lithium-oxygen batteries, but its catalytic mechanism is not fully understood.
  • Researchers used Ag nanowires and advanced electron microscopy to study the reactions between Ag and lithium at their interface, revealing that lithiation creates AgLi and oxidation produces Ag nanoparticles.
  • The findings highlight a cyclic reaction process (Ag-AgLi-Ag) that explains lithium transport during discharge and contribute to improved understanding of complex interfacial reactions in these batteries.
View Article and Find Full Text PDF

Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O Batteries.

Nanomaterials (Basel)

December 2024

The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.

View Article and Find Full Text PDF

Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:

Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO intermediate, promoting formation of ultrathin nanosheet-like LiO with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging.

View Article and Find Full Text PDF

Coordination Regulation Enabling Deep Eutectic Electrolyte for Fast-Charging High-Voltage Lithium Metal Batteries.

Adv Mater

December 2024

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

The safety and cycle stability of lithium metal batteries (LMBs) under conditions of high cut-off voltage and fast charging put forward higher requirements for electrolytes. Here, a sulfonate-based deep eutectic electrolyte (DEE) resulting from the eutectic effect between solid sultone and lithium bis(trifluoromethanesulfonyl)imide without any other additives is reported. The intermolecular coordination effect triggers this eutectic phenomenon, as evidenced with nuclear magnetic resonance, and thus the electrochemical behavior of the DEE can be controlled by jointly regulating the coordination effects of F···H and Li···O intermolecular interactions.

View Article and Find Full Text PDF

Biomass with naturally ion-conducting segments (e.g., hydroxyl) holds promise for sustainable batteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!