AI Article Synopsis

  • - Advanced 3D micro/nanostructures made from functional materials are gaining attention for their applications in electronics, robotics, batteries, and biomedical fields.
  • - This study introduces a new method that uses multiple layers of prestretched elastomeric substrates, allowing for more complex 3D shapes compared to previous techniques that relied on a single layer.
  • - The researchers demonstrate this innovative approach through experimental and computational examples, showcasing structures like helices and 3D cages that are valuable for bio-interfaces and multifunctional systems.

Article Abstract

3D, hierarchical micro/nanostructures formed with advanced functional materials are of growing interest due to their broad potential utility in electronics, robotics, battery technology, and biomedical engineering. Among various strategies in 3D micro/nanofabrication, a set of methods based on compressive buckling offers wide-ranging material compatibility, fabrication scalability, and precise process control. Previously reports on this type of approach rely on a single, planar prestretched elastomeric platform to transform thin-film precursors with 2D layouts into 3D architectures. The simple planar configuration of bonding sites between these precursors and their assembly substrates prevents the realization of certain types of complex 3D geometries. In this paper, a set of hierarchical assembly concepts is reported that leverage multiple layers of prestretched elastomeric substrates to induce not only compressive buckling of 2D precursors bonded to them but also of themselves, thereby creating 3D mesostructures mounted at multiple levels of 3D frameworks with complex, elaborate configurations. Control over strains used in these processes provides reversible access to multiple different 3D layouts in a given structure. Examples to demonstrate these ideas through both experimental and computational results span vertically aligned helices to closed 3D cages, selected for their relevance to 3D conformal bio-interfaces and multifunctional microsystems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202109416DOI Listing

Publication Analysis

Top Keywords

hierarchical assembly
8
compressive buckling
8
prestretched elastomeric
8
mechanically guided
4
guided hierarchical
4
assembly mesostructures
4
mesostructures hierarchical
4
hierarchical micro/nanostructures
4
micro/nanostructures formed
4
formed advanced
4

Similar Publications

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most prevalent type of senile dementia affecting more than 6 million Americans in 2023. Most of these AD cases are sporadic or late-onset AD with unclear etiology. Recent clinical trials on antibody drug clearing Ab plagues in brain show modest benefits of slowing down cognitive decline.

View Article and Find Full Text PDF

Multiscale integral synchronous assembly of cuttlebone-inspired structural materials by predesigned hydrogels.

Nat Commun

January 2025

Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

The overall structural integrity plays a vital role in the unique performance of living organisms, but the integral synchronous preparation of different multiscale architectures remains challenging. Inspired by the cuttlebone's rigid cavity-wall structure with excellent energy absorption, we develop a robust hierarchical predesigned hydrogel assembly strategy to integrally synchronously assemble multiple organic and inorganic micro-nano building blocks to different structures. The two types of predesigned hydrogels, combined with hydrogen, covalent bonding, and electrostatic interactions, are layer-by-layer assembled into brick-and-mortar structures and close-packed rigid micro hollow structures in a cuttlebone-inspired structural material, respectively.

View Article and Find Full Text PDF

Supramolecular modification of sustainable high-molar-mass polymers for improved processing and performance.

Nat Commun

January 2025

Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, Lausanne, Switzerland.

The plastic waste crisis is among humanity's most urgent challenges. However, widespread adoption of sustainable plastics is hindered by their often inadequate processing characteristics and performance. Here, we introduce a bio-inspired strategy for the modification of a representative high molar mass, biodegradable aliphatic polyester that helps overcome these limitations and remains effective at molar masses far greater than the entanglement molar mass.

View Article and Find Full Text PDF

Human cognition is reflected in gaze behavior, which involves eye movements to fixate or shift focus between areas. In natural interactions, gaze behavior serves two functions: signal transmission and information gathering. While expert gaze as a tool for gathering information has been studied, its underlying cognitive processes remain insufficiently explored.

View Article and Find Full Text PDF

Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!