Phytosterol oxidation products from coffee silverskin.

J Food Sci

Department of Chemistry, Carleton University, Ottawa, Ontario, Canada.

Published: February 2022

Coffee silverskin is a byproduct of the coffee roasting process contributing to organic waste burdens in urban areas. Silverskin is a potential source of dietary fiber, protein, carbohydrates, caffeine as well as vitamins and minerals. However, phytosterols present in the plant are susceptible to thermal oxidation resulting in the formation of phytosterol oxidation products (POPs) in the silverskin during roasting. In collaboration with a small roastery, the formation of POPs in three coffee varieties with roasting time was monitored by GC-MS. The objective was to evaluate the safety and potential benefits of incorporating coffee silverskin into value-added products. The qualitative profile of POPs in the silverskin from the three varieties was similar. Average total POPs were 0.32 g POPs/kg silverskin. POPs from the dominant plant sterol, sitosterol, were present at the highest concentrations. Caffeine, total antioxidant capacity, and total flavonoids were measured in the silverskin of the three coffees. Average values were 1.3 g caffeine/100 g silverskin, TEAC of 11 mmol Trolox/kg silverskin, and 1.94 to 8.60 mg catechin equivalent (CE)/g silverskin, respectively. An analysis of the impact of consuming teas and baked goods containing silverskin was also performed. Using published formulations, a tea or cookie containing silverskin would contribute approximately 1 and 0.3 mg POP per day, respectively. Consumption of these products would not substantially increase dietary exposure to POPs, while increasing fiber and antioxidants while reducing organic waste. PRACTICAL APPLICATION: Coffee silverskin has been studied as a possible source of fiber, antioxidants, and caffeine when incorporated in snack foods and used to make teas. To assess possible concerns about increasing dietary oxidized phytosterols, the formation of phytosterol oxidation products (POPs) was investigated in the silverskin fraction during the roasting process in three coffee varieties. In addition, caffeine, antioxidant capacity, and total flavonoids were determined. We found that silverskin can be safely used for value-added products including caffeinated teas, cookies, and bars with minimal impact on dietary POP exposures.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.16042DOI Listing

Publication Analysis

Top Keywords

silverskin
16
coffee silverskin
16
phytosterol oxidation
12
oxidation products
12
roasting process
8
organic waste
8
formation phytosterol
8
products pops
8
pops silverskin
8
three coffee
8

Similar Publications

Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake.

Foods

December 2024

Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Coffee silverskin (CS) is a by-product of the coffee roasting process that is known for its potential as a fiber source with antioxidant properties. Therefore, this study aimed to provide an overview of the latest research on CS as a potential ingredient for functional foods and to evaluate the effect of adding different amounts of CS on the functional and sensory attributes of chocolate cakes. The addition of CS increased the total dietary fiber content, antioxidant capacity and the contents of extractable and non-extractable phenolics in the cakes.

View Article and Find Full Text PDF

Green coffee beans, rejected for commercial use because of glyphosate contamination, were examined to monitor their glyphosate levels from harvest, through roasting, until various coffee extractions. The green beans, Arabica and Robusta, exhibited glyphosate levels above the EU-MRL (0.14-0.

View Article and Find Full Text PDF

Coffee and coffee by-products contain several chemical compounds of great relevance, such as chlorogenic acid (CGA), trigonelline, and caffeine. Furthermore, yeasts have been the target of studies for their use as probiotics because of their interesting biochemical characteristics. The combined administration of probiotic microorganisms with components that provide health benefits mediated by alginate encapsulation is an alternative that ensures the stability of cells and chemical compounds.

View Article and Find Full Text PDF

Bioactive Compounds and Valorization of Coffee By-Products from the Origin: A Circular Economy Model from Local Practices in Zongolica, Mexico.

Plants (Basel)

September 2024

Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico.

Article Synopsis
  • The study focuses on identifying valuable organic and inorganic compounds found in green coffee and its by-products, such as dried cascara, parchment, and silverskin, to explore their reuse in various applications like beverages and fertilizers.
  • Metabolomic profiling using HPLC-ESI-HRMS revealed 93 different bioactive molecules in dried cascara, including organic acids, alkaloids, and phenolic compounds, indicating its rich composition.
  • The research also utilized DART-MS for metabolite identification, confirming the presence of caffeine and antioxidants while showcasing the mineral content, which highlights the potential for sustainable practices and economic benefits for local coffee-growing communities.
View Article and Find Full Text PDF

The utilization of polyols as green solvents for extracting bioactive compounds from plant materials has gained attention due to their safety and inert behavior with plant bioactive chemicals. This study explores the sustainable extraction of phenolic compounds and natural antioxidants from coffee silverskin using the microwave-assisted extraction (MAE) method with polyol-based solvents: glycerin, propylene glycol (PG), butylene glycol (BG), methylpropanediol (MPD), isopentyldiol (IPD), pentylene glycol, 1,2-hexanediol, and hexylene glycol (HG). A comparative analysis was conducted on conventional and non-conventional solvent extractions, focusing on their impact on the bioactive compounds of MAE, encompassing parameters such as total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities like the 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay (DPPH), the 2,2'-azino-bis(-3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging assay (ABTS), and the ferric reducing antioxidant power assay (FRAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!