The human retinal pigment epithelial RPE-1 cell line immortalized with hTERT retains a stable karyotype with a modal chromosome number of 46 and has been widely used to study physiological events in human cell culture systems. To facilitate inducible knock-out or knock-in experiments in this cell line, we have modified the AAVS1 locus to harbour a DNA fragment encoding ERT2-Cre-ERT2 fusion protein under regulation of a Tet-On expression system. In the generated cell line, active Cre recombinase was induced by simple addition of doxycycline and tamoxifen to the culture medium. As proof of concept, we successfully introduced an oncogenic point mutation to the endogenous KRAS gene locus of this cell line. The cell line will serve as a powerful tool to conduct functional analyses of human genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864296 | PMC |
http://dx.doi.org/10.1242/bio.059056 | DOI Listing |
J Microsc
January 2025
Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany.
Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Medical Biotechnology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India.
Introduction: Long non-coding RNAs (lncRNAs) are a fascinating, but still largely uncharacterized, class of genes. Recently, lncRNAs have attracted significant attention due to their emerging functions in development and disease. The role of lncRNAs in chromosome instability or aneuploidy is not extensively studied.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
Methylation of cytosine in CpG dinucleotides is an epigenetic modification carried out by DNA-methyltransferases (DNMTs) that contributes to chromatin condensation and structure and, thus, to gene transcription regulation and chromosome stability. DNMT1 maintains the DNA methylation pattern of the genome at each cell cycle by copying it to the newly synthesized DNA strand during the S-phase. DNMT1 pharmacological inhibition as well as genetic knockout and knockdown, leads to passive DNA methylation loss.
View Article and Find Full Text PDFHum Mol Genet
December 2024
Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada.
Background: Primary ciliopathies are a heterogeneous group of rare disorders predominantly caused by autosomal-recessive genetic variants that disrupt non-motile ciliary function. They often manifest as a syndromic phenotype, frequently involving the kidney. Biallelic pathogenic variants in C2CD3 disrupt ciliogenesis and Sonic Hedgehog (SHH) signaling, resulting in a severe ciliopathy (Orofaciodigital syndrome XIV, OMIM 615948).
View Article and Find Full Text PDFCell Syst
December 2024
Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:
Single-cell CRISPR screens link genetic perturbations to transcriptional states, but high-throughput methods connecting these induced changes to their regulatory foundations are limited. Here, we introduce Multiome Perturb-seq, extending single-cell CRISPR screens to simultaneously measure perturbation-induced changes in gene expression and chromatin accessibility. We apply Multiome Perturb-seq in a CRISPRi screen of 13 chromatin remodelers in human RPE-1 cells, achieving efficient assignment of sgRNA identities to single nuclei via an improved method for capturing barcode transcripts from nuclear RNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!