Ex vivo lung perfusion (EVLP) increases the pool of suitable organs for transplant by facilitating assessment and repair at normothermia, thereby improving identification of quality of marginal organs. However, there exists no current objective approach for assessing total organ edema. We sought to evaluate the use of electrical impedance as a metric to assess total organ edema in lungs undergoing EVLP. Adult porcine lungs (40 kg) underwent normothermic EVLP for 4 hours. To induce varying degrees of lung injury, the allografts were perfused with either Steen, a modified cell culture media, or 0.9% normal saline. Physiologic parameters (peak airway pressure and compliance), pulmonary artery and left atrial blood gases, and extravascular lung water measurements were evaluated over time. Wet-to-dry ratios were evaluated postperfusion. Modified Murray scoring was used to calculate lung injury. Impedance values were associated with lung injury scores ( p = 0.007). Peak airway pressure ( p = 0.01) and PaO 2 /FiO 2 ratios ( p = 0.005) were both significantly associated with reduced impedance. Compliance was not associated with impedance ( p = 0.07). Wet/dry ratios were significantly associated with impedance and Murray Scoring within perfusion groups of Steen, Saline, and Modified Cell Culture ( p = 0.0186, 0.0142, 0.0002, respectively). Electrical impedance offers a noninvasive modality for measuring lung quality as assessed by tissue edema in a porcine model of normothermic EVLP. Further studies evaluating the use of impedance to assess organ edema as a quality marker in human clinical models and abdominal organs undergoing ex vivo perfusion warrant investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247000 | PMC |
http://dx.doi.org/10.1097/MAT.0000000000001591 | DOI Listing |
Sci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
In this paper, an improved voltage control strategy for microgrids (MG) is proposed, using an artificial neural network (ANN)-based adaptive proportional-integral (PI) controller combined with droop control and virtual impedance techniques (VIT). The control strategy is developed to improve voltage control, power sharing and total harmonic distortion (THD) reduction in the MG systems with renewable and distributed generation (DG) sources. The VIT is used to decouple active and reactive power, reduce negative power interactions between DG's and improve the robustness of the system under varying load and generation conditions.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye.
detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA.
Hepatitis A virus (HAV), a major cause of acute liver infections, is transmitted through the fecal-oral route and close contact with infected individuals. Current HAV standardized methods rely on the detection of virus antigen or RNA, which do not differentiate between infectious and non-infectious HAV. The objective of this study was to develop a prototype cell-based electrochemical biosensor for detection of infectious HAV.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Electrical and Computer Engineering Department, Lebanese American University, Byblos, Lebanon.
This scoping review summarizes two emerging electrical impedance technologies: electrical impedance myography (EIM) and electrical impedance tomography (EIT). These methods involve injecting a current into tissue and recording the response at different frequencies to understand tissue properties. The review discusses basic methods and trends, particularly the use of electrodes: EIM uses electrodes for either injection or recording, while EIT uses them for both.
View Article and Find Full Text PDFEnergy Environ Sci
December 2024
Department of Physics, University of Oxford, Clarendon Laboratory Oxford OX1 3PU UK
It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!