Autosomal dominant mutations in sarcomere proteins such as the cardiac troponin T () are the main genetic causes of human hypertrophic cardiomyopathy and dilated cardiomyopathy. Allele-specific silencing by RNA interference (ASP-RNAi) holds promise as a therapeutic strategy for downregulating a single mutant allele with minimal suppression of the corresponding wild-type allele. Here, we propose ASP-RNAi as a possible strategy to specifically knockdown mutant alleles coding for R92Q and R173W mutant TNNT2 proteins, identified in hypertrophic and dilated cardiomyopathy, respectively. Different siRNAs were designed and validated by luciferase reporter assay and following analysis in HEK293T cells expressing either the wild-type or mutant alleles. This study is the first exploration of ASP-RNAi on -R173W and -R92Q mutations and gives a base for further application of allele silencing as a therapeutic treatment for -mutation-associated cardiomyopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160939PMC
http://dx.doi.org/10.1177/15353702211072453DOI Listing

Publication Analysis

Top Keywords

allele-specific silencing
8
r92q r173w
8
cardiac troponin
8
dilated cardiomyopathy
8
mutant alleles
8
silencing rnai
4
rnai r92q
4
r173w mutations
4
mutations cardiac
4
troponin autosomal
4

Similar Publications

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Targeting DNA payloads into human (h)iPSCs involves multiple time-consuming, inefficient steps that must be repeated for each construct. Here, we present STRAIGHT-IN Dual, which enables simultaneous, allele-specific, single-copy integration of two DNA payloads with 100% efficiency within one week. Notably, STRAIGHT-IN Dual leverages the STRAIGHT-IN platform to allow near-scarless cargo integration, facilitating the recycling of components for subsequent cellular modifications.

View Article and Find Full Text PDF

Epigenome editing is an emerging technology that allows to rewrite epigenome states and reprogram gene expression. Here, we have developed allele-specific DNA demethylation editing at gene promoters containing an SNP by sgRNA/dCas9 mediated recuitment of TET1. Maximal DNA demethylation (up to 90%) was observed 6 days after transient transfection of the epigenome editors and it was almost stable for 15 days.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis 4 (ALS4) is an autosomal dominant motor neuron disease that is molecularly characterized by reduced R-loop levels and caused by pathogenic variants in (). encodes an RNA/DNA helicase that resolves three-stranded nucleic acid structures called R-loops. Currently, there are no disease-modifying therapies available for ALS4.

View Article and Find Full Text PDF

Gene therapy is advancing at an unprecedented pace, and the recent success of clinical trials reinforces optimism and trust among the scientific community. Recently, the cardiac gene therapy pipeline, which had progressed more slowly than in other fields, has begun to advance, overcoming biological and technical challenges, particularly in treating genetic heart pathologies. The primary rationale behind the focus on monogenic cardiac diseases is the well-defined molecular mechanisms driving their phenotypes, directly linked to the pathogenicity of single genetic mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!