Cysteine Peptidase Cathepsin X as a Therapeutic Target for Simultaneous TLR3/4-mediated Microglia Activation.

Mol Neurobiol

Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.

Published: April 2022

Microglia are resident macrophages in the central nervous system that are involved in immune responses driven by Toll-like receptors (TLRs). Microglia-mediated inflammation can lead to central nervous system disorders, and more than one TLR might be involved in these pathological processes. The cysteine peptidase cathepsin X has been recognized as a pathogenic factor for inflammation-induced neurodegeneration. Here, we hypothesized that simultaneous TLR3 and TLR4 activation induces synergized microglia responses and that these phenotype changes affect cathepsin X expression and activity. Murine microglia BV2 cells and primary murine microglia were exposed to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)) and the TLR4 ligand lipopolysaccharide (LPS), individually and simultaneously. TLR3 and TLR4 co-activation resulted in increased inflammatory responses compared to individual TLR activation, where poly(I:C) and LPS induced distinct patterns of proinflammatory factors together with different patterns of cathepsin X expression and activity. TLR co-activation decreased intracellular cathepsin X activity and increased cathepsin X localization at the plasma membrane with concomitant increased extracellular cathepsin X protein levels and activity. Inhibition of cathepsin X in BV2 cells by AMS36, cathepsin X inhibitor, significantly reduced the poly(I:C)- and LPS-induced production of proinflammatory cytokines as well as apoptosis. Additionally, inhibiting the TLR3 and TLR4 common signaling pathway, PI3K, with LY294002 reduced the inflammatory responses of the poly(I:C)- and LPS-activated microglia and recovered cathepsin X activity. We here provide evidence that microglial cathepsin X strengthens microglia activation and leads to subsequent inflammation-induced neurodegeneration. As such, cathepsin X represents a therapeutic target for treating neurodegenerative diseases related to excess inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016010PMC
http://dx.doi.org/10.1007/s12035-021-02694-2DOI Listing

Publication Analysis

Top Keywords

cathepsin
12
tlr3 tlr4
12
cysteine peptidase
8
peptidase cathepsin
8
therapeutic target
8
microglia activation
8
central nervous
8
nervous system
8
inflammation-induced neurodegeneration
8
cathepsin expression
8

Similar Publications

Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.

View Article and Find Full Text PDF

Cathepsin B Modulates Alzheimer's Disease Pathology Through SAPK/JNK Signals Following Administration of Porphyromonas gingivalis-Derived Outer Membrane Vesicles.

J Clin Periodontol

December 2024

Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.

Aim: Porphyromonas gingivalis, a consensus periodontal pathogen, is thought to be involved in Alzheimer's disease (AD) progression, and P. gingivalis-derived outer membrane vesicles (PgOMVs) are a key toxic factor in inducing AD pathology. This study aimed to clarify the regulatory mechanism underlying the PgOMV-induced AD-like phenotype.

View Article and Find Full Text PDF

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly.

View Article and Find Full Text PDF

Novel trans-2,3-dihydrofuro[3,2-c]coumarins were synthesized and assessed for their inhibition potential against cysteine proteases: cathepsin B, H and L which are the possible targets for anticancer activity. In general, the coumarin derivatives were found to be exceptional inhibitors against this class of enzymes. On the basis of molecular modeling data and structure-activity relationships, their inhibition patterns are also discussed.

View Article and Find Full Text PDF

Purpose: This study aims to investigate the biological roles and molecular mechanisms of Cathepsin G (CTSG) in the progression of non-small cell lung cancer (NSCLC).

Methods: Western blotting and immunohistochemistry analyses of clinical samples were performed to determine the expression levels of CTSG in patients with NSCLC. Bioinformatic analysis of clinical datasets was conducted to evaluate the correlation between CTSG and lymph node metastasis, tumor stage, and immune cell infiltration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!