Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Designing nanostructure based robust catalyst for the electrochemical water splitting is the great task in the energy conversion field to accomplish high electrical conductivity, low overpotential and long lasting activity. Herein, the electrochemical overall water splitting is reported by using the hydrothermally synthesized binder free cobalt iron phosphate thin films on low cost stainless steel substrates as a conducting backbone for the first time. The effect of composition ratio variation of cobalt and iron was studied on the structural, compositional, morphological, and surface electronic properties by conducting various characterizations which results in amorphous hydrous cobalt iron phosphate having mesoporosity. The as synthesized cobalt iron phosphate having composition ratio (50:50 of Co:Fe) exhibits excellent electrochemical OER and HER catalytic water splitting performance. Best performing electrode exhibits smallest overpotentials of 251.9 mV and 55.5 mV for OER and HER respectively at 10 mA/cm current density. To split water molecule into the H and O by overall water splitting in same alkaline medium, the potential of 1.75 V was required after long duration (100 h) catalysis. Overall analysis confirms the cobalt iron phosphate thin films are outstanding and robust for the hydrogen production as clean renewable energy source.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.01.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!