The existence of heavy metals and emerging organic contaminants in wastewater produces serious toxic residues to the environment. Developing cheap and efficient materials to remove these persistent pollutants is crucial. Iron-based materials are cost-effective and environmentally friendly catalysts, and their applications in the environmental field deserve attention. This paper critically reviewed the removal mechanisms of heavy metals and emerging organic pollutants by different influencing factors. The removal of pollutants (heavy metals and emerging organic pollutants) in a multi-component system was analyzed in detail. The mechanisms of synergism, antagonism and non-interference were discussed. This paper had a certain reference value for the research of wastewater remediation technology which could simultaneously remove various pollutants by iron-based materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.118871DOI Listing

Publication Analysis

Top Keywords

emerging organic
16
iron-based materials
12
heavy metals
12
metals emerging
12
organic contaminants
8
organic pollutants
8
pollutants
5
materials simultaneous
4
simultaneous removal
4
heavy
4

Similar Publications

Hypothesis for Molecular Evolution in the Pre-Cellular Stage of the Origin of Life.

Wiley Interdiscip Rev RNA

January 2025

Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China.

Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious.

View Article and Find Full Text PDF

Sugar substitutes are mostly artificial, man-made industrial products used as additives in food and beverages. Most of these substances flow through the digestive tract and food chains, becoming emerging organic contaminants in various abiotic and biotic environmental media. Here, we predict the mutagenicity and carcinogenicity of commonly used sugar substitutes using in silico based methods.

View Article and Find Full Text PDF

Efficiently obtaining atomic-scale thermodynamic parameters characterizing crystallization from solution is key to developing the modeling strategies needed in the quest for digital design strategies for industrial crystallization processes. Based on the thermodynamics of crystal nucleation in confined solutions, we develop a simulation framework to efficiently estimate the solubility and surface tension of organic crystals in solution from a few unbiased molecular dynamics simulations at a reference temperature. We then show that such a result can be extended with minimal computational overhead to capture the solubility curve.

View Article and Find Full Text PDF

Discovery of 2-Pyrazolines That Inhibit the Phosphorylation of STAT3 as Nanomolar Cytotoxic Agents.

ACS Omega

January 2025

Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka 570006, India.

STAT3 has emerged as a validated target in cancer, being functionally associated with breast cancer (BC) development, growth, resistance to chemotherapy, metastasis, and evasion of immune surveillance. Previously, a series of compounds consisting of imidazo[1,2-]pyridine tethered 2-pyrazolines (referred to as ITPs) were developed that inhibit STAT3 phosphorylation in estrogen receptor-positive (ER+) BC cells. Herein, a new library of derivatives consisting of imidazo[1,2-]pyridine clubbed 2-pyrazolines (-) and its amide derivatives (-) have been synthesized.

View Article and Find Full Text PDF

Environmental and human health is severely threatened by wastewater and air pollution, which contain a broad spectrum of organic and inorganic pollutants. Organic contaminants include dyes, volatile organic compounds (VOCs), medical waste, antibiotics, pesticides, and chemical warfare agents. Inorganic gases such as CO, SO, and NO are commonly found in polluted water and air.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!