Spaceflight imposes the risk of skeletal muscle atrophy for astronauts. Two main factors of a spaceflight that results in deleterious effects are microgravity and cosmic rays in outer space. To study spaceflight-induced muscle atrophy with ground-based models, we performed two models of microgravity, tail suspension and denervation, in a low dose radiation environment and studied transcriptional changes in rat soleus muscle using microarrays. Soleus muscle from rats in the denervation group had greater expression changes compared to that found in rats from the tail suspension group. However, there was a very similar pattern of expression of differentially expressed genes (DEGs) in both models. In total, we identified 144 differentially expressed genes common in both models. Our study yielded two main findings. First, a large number of genes involved in energy metabolism were transcriptionally suppressed including those involved in fatty acid transport and beta-oxidation, and oxidative phosphorylation. Second, slow-twitch contractile protein encoding genes were down-regulated while there was an up-regulation in the fast-twitch type transcription. These results were consistent with other spaceflight studies on the effects on muscle cells, hence showed the potential of our ground-based models in studying spaceflight effects. The genes that might be involved in spaceflight effects will serve as candidate genes for future studies in understanding the mechanism of spaceflight-induced muscle atrophy and result in the development of effective countermeasures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lssr.2021.12.002 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011.
Methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare autosomal recessive genetic disorder caused by mutations in the gene, leading to a variety of clinical manifestations. In October 2022, the Second Xiangya Hospital of Central South University admitted a 21-year-old male patient with neuropsychiatric disorders, presenting primarily with cognitive decline, limb tremors, abnormal mental and behavioral symptoms, seizures, and gait disturbances. These symptoms had gradually developed over 5 years, worsening significantly in the past year.
View Article and Find Full Text PDFBrain Dev
January 2025
Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China. Electronic address:
Background: Disease-modifying therapies can improve motor function in patients with spinal muscular atrophy (SMA), but efficacy varies between individuals. The aim was to evaluate the efficacy and safety of nusinersen treatment in children with SMA and to investigate prognostic factors.
Methods: Motor function, compound muscle action potential (CMAP), and other indicators were prospectively collected before and 14 months after nusinersen treatment.
Cell Commun Signal
January 2025
Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China.
This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
Background: Ankle sprains often result in muscle atrophy and reduced range of motion, which can cause long-term ankle instabilities. Understanding the changes to muscle-such as atrophy-and concomitant changes to deep fascia-which may thicken alongside muscle loss-after ankle sprain injury is important to understanding structural changes about the joint and how they might contribute to longer-term impairments. Here, we employ advanced MRI to investigate skeletal muscle and fascial structural changes during the recovery period of one patient undergoing immobilization after ankle sprains.
View Article and Find Full Text PDFBackground: Sarcopenia has been linked to brain atrophy and there is lack of information on specific muscle groups that may contribute to this link. The psoas muscles are sensitive to sarcopenia and thus may sensitively relate to brain aging and Alzheimer disease risk.
Method: This study utilized 7,149 healthy individuals across four sites (Mean age 53.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!