Biologically competitive effect of Desulfovibrio desulfurican and Pseudomonas stutzeri on corrosion of X80 pipeline steel in the Shenyang soil solution.

Bioelectrochemistry

Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Liaoning Shenyang Soil and Atmosphere Corrosion of Material National Observation and Research Station, Shenyang 110016, China. Electronic address:

Published: June 2022

In this paper, we have investigated the corrosion mechanism of X80 carbon steel in the presence of nitrate reducing bacteria (NRB), sulfate reducing bacteria (SRB) or both in the Shenyang soil solution. The results show that both SRB and NRB increase the corrosion rate of steel specimens and cause pitting corrosion of steel. Electrochemical tests and weight-loss data show that the addition of NRB in the SRB-containing environment leads to the reduction of corrosion. The thermodynamic analyses confirm the competitive advantage of NRB for the nutrients (organic carbon sources and irons) and the chemical oxidation of ferrous sulfide by nitrite, which results in a mitigation in the microbiologically influence corrosion (MIC) of SRB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2022.108051DOI Listing

Publication Analysis

Top Keywords

shenyang soil
8
soil solution
8
reducing bacteria
8
corrosion
6
biologically competitive
4
competitive desulfovibrio
4
desulfovibrio desulfurican
4
desulfurican pseudomonas
4
pseudomonas stutzeri
4
stutzeri corrosion
4

Similar Publications

Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.

View Article and Find Full Text PDF

As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.

View Article and Find Full Text PDF

Discovery of new aliphatic metabolites with antibacterial activities from a soil-derived Streptomyces antifungus.

Fitoterapia

January 2025

Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China. Electronic address:

Fifteen new aliphatic metabolites, 2-methylpyrimidin-4(3H)-ones (1,2), 2-methoxy-2-methyl-1,2-dihydro-3H-pyrrol-3-ones (4a/4b, 5a/5b), butyrolactones (6-9), and aliphatic metabolites (16-20) as well as known pyridin-2(1H)-one (3) and butyrolactone analogues (10-15) were obtained from the fermentation broth of Streptomyces antifungus isolated from the forest soil sample collected in Tengchong, China. Pyrimidin-4(3H)-one derivatives (1, 2) with an individual 2-methylpyrimidin-4(3H)-one skeleton is a kind of rarely reported compound and were firstly obtained from natural source. The structures of the new metabolites were elucidated by comprehensive spectroscopic analysis including data from experimental and calculated ECD spectra as well as Mosher's reagent derivative method.

View Article and Find Full Text PDF

Phthalates in the environment of China: A scoping review of distribution, anthropogenic impact, and degradation based on meta-analysis.

Ecotoxicol Environ Saf

January 2025

Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China. Electronic address:

Phthalates (PAEs) are a group of endocrine-disrupting environmental chemicals (EEDs) that pose significant risks to human health. PAEs are widespread in various environmental media, including air, dust, water, and soil, and are subject to both horizontal and vertical migration. Human activities significantly influence the distribution of PAEs, yet current research on this relationship remains limited.

View Article and Find Full Text PDF

Organohalide respiration: retrospective and perspective through bibliometrics.

Front Microbiol

December 2024

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.

Organohalide-respiring bacteria (OHRB) play a pivotal role in the transformation of organohalogens in diverse environments. This bibliometric analysis provides a timely overview of OHRB research trends and identifies knowledge gaps. Publication numbers have steadily increased since the process was discovered in 1982, with fluctuations in total citations and average citations per publication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!