It is essential to understand the mechanism of algal bloom and develop effect measures to control the hazard in aquatic environment, such as large reservoirs. In this study, a series of experiments, along with field observation from 2007 to 2016, were carried out to identify the hydrodynamic parameters that drive the algal bloom in the Three Gorges Reservoir (TGR), China, and their threshold values were determined. The results show that algae concentration was markedly diluted with a short retention time, and the threshold value of the retention time to avoid algal bloom was approximately less than 3 days. With strong stratification, the algae concentration was able to approach to the level of algal bloom in 10 days, even when the water temperature is lower than 12 °C. The ratio of mixing depth to euphotic depth (Zm/Ze) had significant negative correlations with both algae concentration and algae specific growth rate (SGR). The field monitoring data indicated that Zm/Ze is an important hydrodynamic parameter which sensitively affects algae growth and concentration. This study made the first attempt to determine Zm/Ze >2.8 to restrain algal bloom in the TGR. Our findings shed light on the influence of critical depth on the algal bloom in the TGR, and the results can serve to control algal bloom in reservoirs through discharge operation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.118030DOI Listing

Publication Analysis

Top Keywords

algal bloom
32
algae concentration
12
algal
8
bloom
8
bloom three
8
three gorges
8
gorges reservoir
8
experiments field
8
field monitoring
8
retention time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!