A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrokinetic behavior of artificial and natural calcites: A review of experimental measurements and surface complexation models. | LitMetric

The surface charge of calcite in aqueous environments is essential to many industrial and environmental applications. Electrokinetic measurements are usually used to assess the calcite charging behavior and characterize its electrical double layer (EDL). Numerous surface complexation models (SCMs) have been proposed to interpret the effect of different surface interactions on the zeta potential. Because of their versatility, SCMs have also become important tools in reactive transport modeling. The research on enhanced oil recovery within the last decade has led to an increased number of publications reporting both zeta potential measurements and SCMs for calcite. Nonetheless, the measurements are often inconsistent and the reasons for choosing one model over another are unclear. In this work, we review the models proposed for calcite and address their main differences. We first collect a large number of published zeta potential measurements and then we fit a Diffuse Layer, Basic Stern, and Charge-Distribution Multi-Site Complexation models to a selected reliable dataset. For each model, we maintain a similar number of adjustable parameters. After optimizing the parameters of the models, we systematically compare their prediction capabilities against data obtained in monovalent and divalent electrolyte systems containing calcium, magnesium, sulfate, or carbonate. We show that, often, the discrepancies between the models and the experimental data can be explained by different levels of disequilibrium. Nonetheless, assumptions used in the development of the models may significantly reduce their extrapolability to variable chemical conditions. The poor agreement between the models tuned to electrokinetic data with surface charge measurements and dynamic retention from single-phase flowthrough tests show that zeta potential may not be the best type of data to characterize ion binding at the calcite surface. Including the effect of mineral impurities and temperature on the calcite surface speciation and electrokinetic behavior prevail as main challenges for reactive transport modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2022.102600DOI Listing

Publication Analysis

Top Keywords

zeta potential
16
complexation models
12
electrokinetic behavior
8
surface complexation
8
models
8
surface charge
8
reactive transport
8
transport modeling
8
potential measurements
8
calcite surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!