The piRNA system controls transposable element (TE) mobility by transcriptional gene silencing and post-transcriptional gene silencing. Dispersed in insect genomes, piRNA clusters contain TE copies, from which they produce piRNAs (specific small RNAs). These piRNAs can both target the nascent transcripts produced by active TE copies and directly repress them by heterochromatinization. They can also target mature transcripts and cleave them following amplification by the so-called 'ping-pong' loop mechanism. Moreover, piRNA clusters contain endogenous viral elements (EVEs), from which they produce piRNAs. The current idea is that these piRNAs could participate in the antiviral response against exogenous viral infection. In this review, we show that among insects, to date, this antiviral response by the piRNA system appears mainly restricted to mosquitoes, but this could be due to the focus of most studies on arboviruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cois.2022.100876 | DOI Listing |
Mob DNA
January 2025
School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
Background: Piwi-interacting RNAs (piRNA)s are non-coding small RNAs that post-transcriptionally affect gene expression and regulation. Through complementary seed region binding with transposable elements (TEs), piRNAs protect the genome from transposition. A tool to link piRNAs with complementary TE targets will improve our understanding of the role of piRNAs in genome maintenance and gene regulation.
View Article and Find Full Text PDFNat Aging
January 2025
Department of Genetics, Eötvös Loránd University (ELTE), Budapest, Hungary.
J Exp Bot
January 2025
Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France.
Nucleosomes, the chromatin building blocks, play an important role in controlling DNA and chromatin accessibility. Nucleosome remodeling and the incorporation of distinct histone variants confer unique structural and biochemical properties, influencing the targeting of multiple epigenetic pathways, particularly DNA methylation. This stable epigenetic mark suppresses transposable element expression in plants and mammals, serving as an additional layer of chromatin regulation.
View Article and Find Full Text PDFAm J Pathol
January 2025
Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
Using male sterile (MS) lines instead of normal inbred maternal lines in hybrid seed production can increase the yield and quality with lower production costs. Therefore, developing a new MS germplasm is essential for maize hybrid seed production in the future. Here, we reported a male sterility gene , cloned from a newly found MS mutant .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!