A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Responses of lipid metabolism and lipidomics in the hepatopancreas of Pacific white shrimp Litopenaeus vannamei to microcystin-LR exposure. | LitMetric

Microcystin-LR (MC-LR) is a toxic substance that threatens the health of aquatic animals. Hepatopancreas is the target organ of MC-LR toxicity. In this study, we investigated the effects of MC-LR on hepatopancreas lipid metabolism and lipidomic responses in Litopenaeus vannamei. After MC-LR exposure for 72 h, the hepatopancreas showed obvious tissue damage, and the activities of several lipase isoenzymes were decreased. Furthermore, the relative gene expression levels of lipolysis (CPT1, AMPKα), lipogenesis (SREBP, FAS, ACC, 6PGD), and long-chain fatty acid β-oxidation (ACDL, ACDVL, ACBP) were increased. MC-LR exposure also affected lipidomics homeostasis. Specifically, the levels of glycerophospholipids (phosphatidylcholine, phosphatidic acid, lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, lyso-phosphatidylglycerol), sphingolipids (sphingomyelin and ceramides) and cholesteryl ester were increased, and those of phosphatidylinositol and triglyceride were decreased. The significantly altered lipid molecules were mainly associated with the pathways of lipid and fatty acid metabolism and autophagy. These results reveal that MC-LR exposure influences lipid metabolism and lipidomic homeostasis in the shrimp hepatopancreas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153245DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
12
mc-lr exposure
12
litopenaeus vannamei
8
metabolism lipidomic
8
fatty acid
8
mc-lr
6
hepatopancreas
5
responses lipid
4
metabolism
4
metabolism lipidomics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!