Thermoregulatory significance of immobility in the forced swim test.

Physiol Behav

Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. Electronic address:

Published: April 2022

The forced swim test (FST) is a widely used animal model of depression and antidepressant drug screen. Rats are forced to swim on two test days in a restricted space from which there is no escape. On the first test day the rats attempt to escape and then become largely immobile; on the second test day the onset of immobility is more rapid. Immobility is said to reflect a state of lowered mood or "behavioral despair", but the validity of the FST as a model of depression has been questioned. We show here that whatever psychological states the FST may induce, immobility is water temperature dependent and thermoregulatory. In Experiment 1, separate groups of rats were first tested in water of 15, 20, 22, 25, 30, 35, 37, or 40 °C. When retested at the same temperature, reduced activity was evident only in those groups tested above 20 °C and below 37 °C. On a third test, rats previously tested in 35 °C water failed to show reduced activity in 15 °C water, whereas rats previously tested at 15 °C water did exhibit reduced activity when tested in 35 °C water. Thus, activity was dependent on current water temperature rather than prior experience. In Experiment 2, activity and body temperature were monitored during 30 min swim tests in 27 °C water. The more the animals moved, the greater the loss of body temperature. The results are consistent with a hypothesis that immobility in the FST is an adaptive thermoregulatory response that increases survival by minimizing convective heat loss. This interpretation is also aligned with best practices for survival of humans in water that is below thermoneutral.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2022.113709DOI Listing

Publication Analysis

Top Keywords

°c water
20
tested °c
16
forced swim
12
swim test
12
rats tested
12
reduced activity
12
water
9
model depression
8
test day
8
water temperature
8

Similar Publications

A flexible wearable sensor based on the multiple interaction and synergistic effect of the hydrogel components with anti-freezing, low swelling for human motion detection and underwater communication.

Int J Biol Macromol

January 2025

School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China. Electronic address:

To meet the increasing demand for wearable sensor in special environment such as low temperature or underwater, a multifunctional ionic conducting hydrogel (Gel/PSAA-Al hydrogel) with anti-freezing and low swelling for human motion detection and underwater communication was prepared using gelatin (Gel), [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), acrylamide (AAm), acrylic acid (AAc), and AlCl. Due to reversible hydrogen bonding, electrostatic interactions and metal coordination crosslinking between the polymer networks, the resulting Gel/PSAA-Al hydrogels present low swelling property in water and exhibit large tensile properties (~1050 %), high tensile strength (~250 kPa) and excellent fatigue resistance. In addition, the hydration capacity of SBMA and AlCl endows the Gel/PSAA-Al hydrogel fantastic anti-freezing (-31.

View Article and Find Full Text PDF

Echium amoenum (borage) powder (EAP) is consumed traditionally and is known to possess health-promoting effects. In this research, application of Echium amoenum (borage) powder (EAP) at levels of zero, 1 and 2 % w/w was investigated in the production of biscuit as a widely consumed snack and some characteristics of dough and biscuit samples were evaluated. By adding EAP and increasing its level, water absorption values and dough stability increased (p < 0.

View Article and Find Full Text PDF

The fate of intracellular and extracellular antibiotic resistance genes during ultrafiltration-ultraviolet-chlorination in a full-scale wastewater tretament plant.

J Hazard Mater

January 2025

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia. Electronic address:

Effluent from wastewater treatment plants (WWTPs) is recognized as a significant source of antibiotic resistance genes (ARGs) in the environment. Advanced treatment processes such as ultrafiltration (UF), ultraviolet (UV) light disinfection, and chlorination have emerged as promising approaches for ARG removal. However, the efficacy of sequential disinfection processes, such as UF-UV-chlorination on intracellular (iARGs) and extracellular ARGs (eARGs), remains largely unknown.

View Article and Find Full Text PDF

This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.

View Article and Find Full Text PDF

Modifying the Resistant Starch Content and the Retrogradation Characteristics of Potato Starch Through High-Dose Gamma Irradiation.

Gels

November 2024

State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, China.

Potato starch is widely utilized in the food industry. Gamma irradiation is a cost-effective and environmentally friendly method for starch modification. Nevertheless, there is a scarcity of comprehensive and consistent knowledge regarding the physicochemical characteristics of high-dose gamma-irradiated potato starch, retrogradation properties in particular.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!