Diffuse idiopathic skeletal hyperostosis (DISH) is a noninflammatory skeletal disease characterized by the progressive ectopic ossification and calcification of ligaments and enthuses. However, specific pathogenesis remains unknown. Bone marrow mesenchymal stem cells (BMSCs) are a major source of osteoblasts and play vital roles in bone metabolism and ectopic osteogenesis. However, it is unclear whether BMSCs are involved in ectopic calcification and ossification in DISH. The current study aimed to explore the osteogenic differentiation abilities of BMSCs from DISH patients (DISH-BMSCs). Our results showed that DISH-BMSCs exhibited stronger osteogenic differentiation abilities than normal control (NC)-BMSCs. Human cytokine array kit analysis showed significantly increased secretion of Galectin-3 in DISH-BMSCs. Furthermore, Galectin-3 downregulation inhibited the increased osteogenic differentiation ability of DISH-BMSCs, whereas exogenous Galectin-3 significantly enhanced the osteogenic differentiation ability of NC-BMSCs. Notably, the increased Galectin-3 in DISH-BMSCs enhanced the expression of β-catenin as well as TCF-4, whereas attenuation of Wnt/β-catenin signaling partially alleviated Galectin-3-induced osteogenic differentiation and activity in DISH-BMSCs. In addition, our results noted that Galectin-3 interacted with β-catenin and enhanced its nuclear accumulation. Further in vivo studies showed that exogenous Galectin-3 enhanced ectopic bone formation in the Achilles tendon in trauma-induced rats by activating Wnt/β-catenin signaling. The current study indicated that enhanced osteogenic differentiation of DISH-BMSCs was mainly attributed to the increased secretion of Galectin-3 by DISH-BMSCs, which enhanced β-catenin expression and its nuclear accumulation. Our study helps illuminate the mechanisms of pathological osteogenesis and sheds light on the possible development of potential therapeutic strategies for DISH treatment. © 2022 American Society for Bone and Mineral Research (ASBMR).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.4508DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
28
wnt/β-catenin signaling
12
galectin-3 dish-bmscs
12
galectin-3
8
diffuse idiopathic
8
idiopathic skeletal
8
skeletal hyperostosis
8
current study
8
differentiation abilities
8
dish-bmscs
8

Similar Publications

Large bone defects are still a persistent challenge in orthopedics. The availability limitations and associated complications of autologous and allogeneic bone have prompted an increasing reliance on tissue engineering and regenerative medicine. In this study, we developed an injectable scaffold combining an acellular extracellular periosteal matrix hydrogel with poly(d,l-lactate--glycol-acetate) microspheres loaded with the E7 peptide and miR217 (miR217/E7@MP-GEL).

View Article and Find Full Text PDF

Functional injectable hydrogel (IH) is promising for infected bone defects (IBDs) repair, but how to endow it with desired antibacterial/immunoregulatory functions as well as avoid mechanical failures during its manipulation has posed as main challenges. Herein, rosmarinic acid (RosA), a natural product with antibacterial/immunoregulatory activities, was utilized to develop a FCR IH through forming phenylboronic acid ester bonds with 4-formylphenyl phenylboronic acid (4-FPBA) grafted chitosan (CS) (FC). After being applied to the IBD site, the FCR IH was then injected with tobramycin (Tob) solution, another alkaline antibacterial drug, to induce in situ crystallization of the FC, endowing the resultant FCRT hydrogel with adaptively enhanced mechanical strength and structural stability.

View Article and Find Full Text PDF

Bioprinting of nanohydroxyapatite (nHA)-based bioinks has attracted considerable interest in bone tissue engineering. However, the role and relevance of the physicochemical properties of nHA incorporated in a bioink, particularly in terms of its printability and the biological behavior of bioprinted cells, remain largely unexplored. In this study, two bioinspired nHAs with different chemical compositions, crystallinity, and morphologies were synthesized and characterized: a more crystalline, needle-like Mg-doped nHA (N-HA) and a more amorphous, rounded Mg- and CO-doped nHA (R-HA).

View Article and Find Full Text PDF

The potential role of SCF combined with DPCs in facial nerve repair.

J Mol Histol

January 2025

School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150000, China.

Facial nerve injuries lead to significant functional impairments and psychological distress for affected patients. Effective repair of these injuries remains a challenge. For longer nerve gaps, the regeneration outcomes after nerve grafting remain suboptimal due to limited sources and postoperative immune responses.

View Article and Find Full Text PDF

FGFR2 directs inhibition of WNT signaling to regulate anterior fontanelle closure during skull development.

Development

January 2025

Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.

The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!