Gasification is the thermo-chemical process that converts biomass into producer gas which is used for various applications like heat production, electricity, and hydrocarbon synthesis. In this present work, the steam gasification of biomedical waste such as glucose plastic bottle, syringe, and Indian palm kernel shell is gasified in fluidized bed gasifier. The mixture of palm kernel shell co-feeding with biomedical waste such as 100% palm kernel shell (PKS), 25% biomedical waste (BMW), 50% biomedical waste, and 100% biomedical waste using olivine as a primary catalyst is used. The influences of co-feeding of biomedical waste with palm kernel shell on the gas yield, char yield, tar yield, carbon conversion efficiency, tar composition, and gas composition are investigated. The co-feeding of biomedical waste with palm kernel shell for steam/feedstock mass ratio of 1, the tar content is decreased from 53.56 to 3.6 gNm and the char is reduced from 4.9 to 0.4 wt %. Heterocyclic, heavy polycyclic aromatic hydrocarbons and light aromatic compounds are reducing when compared to that of light polycyclic aromatic hydrocarbons at temperature 900 °C. The value of carbon conversion efficiency also increases for palm kernel shell is 78.7% and for biomedical waste is 98% respectively. Hence, the scope of the present study is to optimize the process parameters for the taken feedstock with respect to our environmental condition with the help of lab scale reactors. Later scale up can be done to utilize the product for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-18765-3 | DOI Listing |
J Cardiovasc Magn Reson
January 2025
Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA. Electronic address:
Delivery of health care, including medical imaging, generates substantial global greenhouse gas emissions. The cardiovascular magnetic resonance (CMR) community has an opportunity to decrease our carbon footprint, mitigate the effects of the climate crisis, and develop resiliency to current and future impacts of climate change. The goal of this document is to review and recommend actions and strategies to allow for CMR operation with improved sustainability, including efficient CMR protocols and CMR imaging workflow strategies for reducing greenhouse gas emissions, energy, and waste, and to decrease reliance on finite resources, including helium and waterbody contamination by gadolinium-based contrast agents.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical and Environmental Engineering and Pro-Vice-Chancellor (Planning & Resources), University of Mauritius, Reduit, Mauritius.
Polyhydroxyalkanoates (PHAs) represent a promising class of biodegradable polyesters synthesized by various microorganisms as energy storage compounds. Their versatility and environmental friendliness make them potential candidates for replacing conventional plastics across numerous applications. However, challenges such as limited mechanical properties, high production costs, and thermal instability have hindered their widespread adoption.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Molecular Bioscience, The University of Texas at Austin, Austin, Texas 78712, USA.
Extracellular vesicles (EVs) are secreted by almost all cell types and contain DNA, RNA, proteins, lipids and other metabolites. EVs were initially believed to be cellular waste but now recognized for their role in cell-to-cell communication. Later, EVs from immune cells were discovered to function similarly to their parent cells, paving the way for their use as gene and drug carriers.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America.
Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas 77030.
The mammalian kidney develops in three sequential stages referred to as the pronephros, mesonephros, and metanephros, each developing from the preceding form. All three phases of kidney development utilize epithelized tubules called nephrons, which function to take in filtrate from the blood or coelom and selectively reabsorb solutes the organism needs, leaving waste products to be excreted as urine. The pronephros are heavily studied in aquatic organisms such as zebrafish and Xenopus, as they develop quickly and are functional.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!