Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tissue-resident memory γδT cells at mucosal and epithelial sites play an important role for pathogen clearance, immunosurveillance, and participating in physiological processes. Different from other barrier sites, the immune cells in uterus face the protection against infections and tolerate an allogeneic fetus during a successful pregnancy. In the previous study, we found that tissue-resident memory γδT cells were enriched both in human and murine uterus and highly expressed IL-17 that promoted the invasion of trophocytes in vitro. In the current study, we found that γδT cells in uterus but not in blood or spleens expressed higher levels of estrogen receptors. The injection of estrogen into mice increased the proportion of γδT cells in uterus but not in spleens in vivo via CXCR3-CXCL10 chemokine axis. In addition, we found that estrogen enhanced the production of IL-17 but not IFN-γ in vivo and in vitro via interferon regulatory factor 4 but not RORγt and pSTAT3 at mRNA and protein levels. The analysis of cell transcriptome sequence further identified multiple differentially expressed genes between estrogen and control γδT cells. Our study demonstrated that estrogen directly act on γδT cells in uterus to enhance the production of IL-17 that might promote the invasion of trophocytes. Furthermore, our study might provide a new idea that estrogen increased the prevalence of autoimmune diseases in women by enhancing γδT cell-derived IL-17 production in uterus and uncover the critical pathological roles for estrogen in the development of autoimmune diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202101443RR | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!