Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Staphylococcus aureus is often considered as a potential pathogen and resistant to a wide range of antibiotics. The pathogenicity of this bacterium is due to the presence of multiple virulence factors and the ability to form biofilm. SCCmec types I, II and III are mainly attributed to HA-MRSA, while SCCmec types IV and V have usually been reported in CA-MRSA infections.
Methods And Results: In this study, we performed a cross-sectional study to determine the antimicrobial resistance, adhesion and virulence factors, biofilm formation and SCCmec typing of clinical S. aureus isolates in Iran. S. aureus isolates were identified using microbiological standard methods and antibiotic susceptibility tests were performed as described by the Clinical and Laboratory Standards Institute (CLSI) guidelines. Inducible resistance phenotype and biofilm formation were determined using D-test and tissue culture plate methods, respectively. Multiplex-PCRs were performed to detect adhesion and virulence factors, antibiotic resistance genes, biofilm formation and SCCmec typing by specific primers. Among 143 clinical samples, 67.8% were identified as MRSA. All isolates were susceptible to vancomycin. The prevalence of cMLS, iMLS and MS phenotypes were 61.1%, 22.2% and 14.8%, respectively. The TCP method revealed that 71.3% of isolates were able to form biofilm. The predominant virulence and inducible resistance genes in both MRSA and MSSA isolates were related to sea and ermC respectively. SCCmec type III was the predominant type.
Conclusions: Data show the high prevalence rates of virulence elements among S. aureus isolates, especially MRSA strains. This result might be attributed to antibiotic pressure, facilitating clonal selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-022-07140-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!